BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 31780803)

  • 1. Cell alignment and accumulation using acoustic nozzle for bioprinting.
    Sriphutkiat Y; Kasetsirikul S; Ketpun D; Zhou Y
    Sci Rep; 2019 Nov; 9(1):17774. PubMed ID: 31780803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coaxial bioprinting of cell-laden vascular constructs using a gelatin-tyramine bioink.
    Hong S; Kim JS; Jung B; Won C; Hwang C
    Biomater Sci; 2019 Nov; 7(11):4578-4587. PubMed ID: 31433402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A 3D cell printed muscle construct with tissue-derived bioink for the treatment of volumetric muscle loss.
    Choi YJ; Jun YJ; Kim DY; Yi HG; Chae SH; Kang J; Lee J; Gao G; Kong JS; Jang J; Chung WK; Rhie JW; Cho DW
    Biomaterials; 2019 Jun; 206():160-169. PubMed ID: 30939408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional bioprinting of embryonic stem cells directs highly uniform embryoid body formation.
    Ouyang L; Yao R; Mao S; Chen X; Na J; Sun W
    Biofabrication; 2015 Nov; 7(4):044101. PubMed ID: 26531008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micropatterning of endothelial cells to create a capillary-like network with defined architecture by laser-assisted bioprinting.
    Kérourédan O; Bourget JM; Rémy M; Crauste-Manciet S; Kalisky J; Catros S; Thébaud NB; Devillard R
    J Mater Sci Mater Med; 2019 Feb; 30(2):28. PubMed ID: 30747358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional direct cell bioprinting for tissue engineering.
    Ozler SB; Bakirci E; Kucukgul C; Koc B
    J Biomed Mater Res B Appl Biomater; 2017 Nov; 105(8):2530-2544. PubMed ID: 27689939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanically Tunable Bioink for 3D Bioprinting of Human Cells.
    Forget A; Blaeser A; Miessmer F; Köpf M; Campos DFD; Voelcker NH; Blencowe A; Fischer H; Shastri VP
    Adv Healthc Mater; 2017 Oct; 6(20):. PubMed ID: 28731220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversible physical crosslinking strategy with optimal temperature for 3D bioprinting of human chondrocyte-laden gelatin methacryloyl bioink.
    Gu Y; Zhang L; Du X; Fan Z; Wang L; Sun W; Cheng Y; Zhu Y; Chen C
    J Biomater Appl; 2018 Nov; 33(5):609-618. PubMed ID: 30360677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pre-set extrusion bioprinting for multiscale heterogeneous tissue structure fabrication.
    Kang D; Ahn G; Kim D; Kang HW; Yun S; Yun WS; Shim JH; Jin S
    Biofabrication; 2018 Jun; 10(3):035008. PubMed ID: 29786607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembled human osseous cell sheets as living biopapers for the laser-assisted bioprinting of human endothelial cells.
    Kawecki F; Clafshenkel WP; Auger FA; Bourget JM; Fradette J; Devillard R
    Biofabrication; 2018 Apr; 10(3):035006. PubMed ID: 29638221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Novel Plasma-Based Bioink Stimulates Cell Proliferation and Differentiation in Bioprinted, Mineralized Constructs.
    Ahlfeld T; Cubo-Mateo N; Cometta S; Guduric V; Vater C; Bernhardt A; Akkineni AR; Lode A; Gelinsky M
    ACS Appl Mater Interfaces; 2020 Mar; 12(11):12557-12572. PubMed ID: 32092249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioprinting of high cell-density constructs leads to controlled lumen formation with self-assembly of endothelial cells.
    Tröndle K; Koch F; Finkenzeller G; Stark GB; Zengerle R; Koltay P; Zimmermann S
    J Tissue Eng Regen Med; 2019 Oct; 13(10):1883-1895. PubMed ID: 31314936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biofabrication of valentine-shaped heart with a composite hydrogel and sacrificial material.
    Zou Q; Grottkau BE; He Z; Shu L; Yang L; Ma M; Ye C
    Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110205. PubMed ID: 31924015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic-enhanced 3D bioprinting of aligned myoblast-laden hydrogels leads to functionally organized myofibers in vitro and in vivo.
    Costantini M; Testa S; Mozetic P; Barbetta A; Fuoco C; Fornetti E; Tamiro F; Bernardini S; Jaroszewicz J; Święszkowski W; Trombetta M; Castagnoli L; Seliktar D; Garstecki P; Cesareni G; Cannata S; Rainer A; Gargioli C
    Biomaterials; 2017 Jul; 131():98-110. PubMed ID: 28388499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of hydrogels for bioprinting of endothelial cells.
    Benning L; Gutzweiler L; Tröndle K; Riba J; Zengerle R; Koltay P; Zimmermann S; Stark GB; Finkenzeller G
    J Biomed Mater Res A; 2018 Apr; 106(4):935-947. PubMed ID: 29119674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Digitally Tunable Microfluidic Bioprinting of Multilayered Cannular Tissues.
    Pi Q; Maharjan S; Yan X; Liu X; Singh B; van Genderen AM; Robledo-Padilla F; Parra-Saldivar R; Hu N; Jia W; Xu C; Kang J; Hassan S; Cheng H; Hou X; Khademhosseini A; Zhang YS
    Adv Mater; 2018 Oct; 30(43):e1706913. PubMed ID: 30136318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a bioprinting approach for automated manufacturing of multi-cell type biocomposite TRACER strips using contact capillary-wicking.
    Li NT; Rodenhizer D; Mou J; Shahaj A; Samardzic K; McGuigan AP
    Biofabrication; 2019 Oct; 12(1):015001. PubMed ID: 31553953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional bioprinting of cell-laden constructs with polycaprolactone protective layers for using various thermoplastic polymers.
    Kim BS; Jang J; Chae S; Gao G; Kong JS; Ahn M; Cho DW
    Biofabrication; 2016 Aug; 8(3):035013. PubMed ID: 27550946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D bioprinting of heterogeneous bi- and tri-layered hollow channels within gel scaffolds using scalable multi-axial microfluidic extrusion nozzle.
    Attalla R; Puersten E; Jain N; Selvaganapathy PR
    Biofabrication; 2018 Dec; 11(1):015012. PubMed ID: 30537688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D Bioprinting Human Induced Pluripotent Stem Cell Constructs for In Situ Cell Proliferation and Successive Multilineage Differentiation.
    Gu Q; Tomaskovic-Crook E; Wallace GG; Crook JM
    Adv Healthc Mater; 2017 Sep; 6(17):. PubMed ID: 28544655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.