BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 31781143)

  • 1. Hairy Root Transformation: A Useful Tool to Explore Gene Function and Expression in
    Gomes C; Dupas A; Pagano A; Grima-Pettenati J; Paiva JAP
    Front Plant Sci; 2019; 10():1427. PubMed ID: 31781143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly efficient Agrobacterium rhizogenes-mediated hairy root transformation for gene functional and gene editing analysis in soybean.
    Cheng Y; Wang X; Cao L; Ji J; Liu T; Duan K
    Plant Methods; 2021 Jul; 17(1):73. PubMed ID: 34246291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly efficient
    Wang M; Qin YY; Wei NN; Xue HY; Dai WS
    Front Plant Sci; 2023; 14():1293374. PubMed ID: 38023879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protoplast-Based Transient Expression and Gene Editing in Shrub Willow (
    Hyden B; Yuan G; Liu Y; Smart LB; Tuskan GA; Yang X
    Plants (Basel); 2022 Dec; 11(24):. PubMed ID: 36559601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly efficient Agrobacterium rhizogenes-mediated transformation for functional analysis in woodland strawberry.
    Yan H; Ma D; Yi P; Sun G; Chen X; Yi Y; Huang X
    Plant Methods; 2023 Sep; 19(1):99. PubMed ID: 37742022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Joint linkage and association mapping of complex traits in shrub willow (Salix purpurea L.).
    Carlson CH; Gouker FE; Crowell CR; Evans L; DiFazio SP; Smart CD; Smart LB
    Ann Bot; 2019 Oct; 124(4):701-716. PubMed ID: 31008500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Eucalyptus hairy roots, a fast, efficient and versatile tool to explore function and expression of genes involved in wood formation.
    Plasencia A; Soler M; Dupas A; Ladouce N; Silva-Martins G; Martinez Y; Lapierre C; Franche C; Truchet I; Grima-Pettenati J
    Plant Biotechnol J; 2016 Jun; 14(6):1381-93. PubMed ID: 26579999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Efficient Root Transformation System for Recalcitrant
    Nguyen V; Searle IR
    Front Plant Sci; 2021; 12():781014. PubMed ID: 35069639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transgenic Medicago truncatula plants obtained from Agrobacterium tumefaciens -transformed roots and Agrobacterium rhizogenes-transformed hairy roots.
    Crane C; Wright E; Dixon RA; Wang ZY
    Planta; 2006 May; 223(6):1344-54. PubMed ID: 16575594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Agrobacterium rhizogenes mediated hairy root induction in endangered Berberis aristata DC.
    Brijwal L; Tamta S
    Springerplus; 2015; 4():443. PubMed ID: 26312208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast, efficient and reproducible genetic transformation of Phaseolus spp. by Agrobacterium rhizogenes.
    Estrada-Navarrete G; Alvarado-Affantranger X; Olivares JE; Guillén G; Díaz-Camino C; Campos F; Quinto C; Gresshoff PM; Sanchez F
    Nat Protoc; 2007; 2(7):1819-24. PubMed ID: 17641650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Striga parasitizes transgenic hairy roots of Zea mays and provides a tool for studying plant-plant interactions.
    Runo S; Macharia S; Alakonya A; Machuka J; Sinha N; Scholes J
    Plant Methods; 2012 Jun; 8(1):20. PubMed ID: 22720750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative transcriptomics and eQTL mapping of response to Melampsora americana in selected Salix purpurea F
    Wilkerson DG; Crowell CR; Carlson CH; McMullen PW; Smart CD; Smart LB
    BMC Genomics; 2022 Jan; 23(1):71. PubMed ID: 35065596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genotype-independent
    Aggarwal PR; Nag P; Choudhary P; Chakraborty N; Chakraborty S
    Plant Methods; 2018; 14():55. PubMed ID: 29988950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inducing Hairy Roots by Agrobacterium rhizogenes-Mediated Transformation in Tartary Buckwheat (Fagopyrum tataricum).
    Mi Y; Zhu Z; Qian G; Li Y; Meng X; Xue J; Chen Q; Sun W; Shi Y
    J Vis Exp; 2020 Mar; (157):. PubMed ID: 32225142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A protocol for the generation of
    Nanjareddy K; Zepeda-Jazo I; Arthikala MK
    Appl Plant Sci; 2022; 10(1):e11454. PubMed ID: 35228912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An
    Garagounis C; Georgopoulou ME; Beritza K; Papadopoulou KK
    MethodsX; 2020; 7():101098. PubMed ID: 33102159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trees, fungi and bacteria: tripartite metatranscriptomics of a root microbiome responding to soil contamination.
    Gonzalez E; Pitre FE; Pagé AP; Marleau J; Guidi Nissim W; St-Arnaud M; Labrecque M; Joly S; Yergeau E; Brereton NJB
    Microbiome; 2018 Mar; 6(1):53. PubMed ID: 29562928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Artemisia tilesii Ledeb hairy roots establishment using Agrobacterium rhizogenes-mediated transformation.
    Matvieieva NA; Shakhovsky AM; Belokurova VB; Drobot KO
    Prep Biochem Biotechnol; 2016 May; 46(4):342-5. PubMed ID: 25838068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cotton Hairy Root Culture as an Alternative Tool for Cotton Functional Genomics.
    Kim HJ
    Methods Mol Biol; 2019; 1902():213-221. PubMed ID: 30543074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.