BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

407 related articles for article (PubMed ID: 31781332)

  • 1. Radiation-Induced Normal Tissue Damage: Oxidative Stress and Epigenetic Mechanisms.
    Wei J; Wang B; Wang H; Meng L; Zhao Q; Li X; Xin Y; Jiang X
    Oxid Med Cell Longev; 2019; 2019():3010342. PubMed ID: 31781332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduction-oxidation (redox) system in radiation-induced normal tissue injury: molecular mechanisms and implications in radiation therapeutics.
    Yahyapour R; Motevaseli E; Rezaeyan A; Abdollahi H; Farhood B; Cheki M; Rezapoor S; Shabeeb D; Musa AE; Najafi M; Villa V
    Clin Transl Oncol; 2018 Aug; 20(8):975-988. PubMed ID: 29318449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting of cellular redox metabolism for mitigation of radiation injury.
    Farhood B; Ashrafizadeh M; Khodamoradi E; Hoseini-Ghahfarokhi M; Afrashi S; Musa AE; Najafi M
    Life Sci; 2020 Jun; 250():117570. PubMed ID: 32205088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ionizing radiation-induced oxidative stress, epigenetic changes and genomic instability: the pivotal role of mitochondria.
    Szumiel I
    Int J Radiat Biol; 2015 Jan; 91(1):1-12. PubMed ID: 24937368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-Dose Ionizing Radiation Exposure, Oxidative Stress and Epigenetic Programing of Health and Disease.
    Tharmalingam S; Sreetharan S; Kulesza AV; Boreham DR; Tai TC
    Radiat Res; 2017 Oct; 188(4.2):525-538. PubMed ID: 28753061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NADPH Oxidase as a Target for Modulation of Radiation Response; Implications to Carcinogenesis and Radiotherapy.
    Mortezaee K; Goradel NH; Amini P; Shabeeb D; Musa AE; Najafi M; Farhood B
    Curr Mol Pharmacol; 2019; 12(1):50-60. PubMed ID: 30318012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of oxidative stress in a rat model of radiation-induced erectile dysfunction.
    Kimura M; Rabbani ZN; Zodda AR; Yan H; Jackson IL; Polascik TJ; Donatucci CF; Moul JW; Vujaskovic Z; Koontz BF
    J Sex Med; 2012 Jun; 9(6):1535-49. PubMed ID: 22489731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Free radicals, metals and antioxidants in oxidative stress-induced cancer.
    Valko M; Rhodes CJ; Moncol J; Izakovic M; Mazur M
    Chem Biol Interact; 2006 Mar; 160(1):1-40. PubMed ID: 16430879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inflammation and chronic oxidative stress in radiation-induced late normal tissue injury: therapeutic implications.
    Zhao W; Robbins ME
    Curr Med Chem; 2009; 16(2):130-43. PubMed ID: 19149566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of Mitochondria in Radiation Responses: Epigenetic, Metabolic, and Signaling Impacts.
    Averbeck D; Rodriguez-Lafrasse C
    Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of carbon irradiation is associated with greater oxidative stress in mouse intestine and colon relative to γ-rays.
    Suman S; Kumar S; Fornace AJ; Datta K
    Free Radic Res; 2018 May; 52(5):556-567. PubMed ID: 29544379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of Oxidative Stress in Pulmonary Artery Endothelium. Modulation of Extracellular Superoxide Dismutase and NOX4 Expression Using Histone Deacetylase Class I Inhibitors.
    Zelko IN; Folz RJ
    Am J Respir Cell Mol Biol; 2015 Oct; 53(4):513-24. PubMed ID: 25749103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of oxidative stress in diabetic complications.
    Niedowicz DM; Daleke DL
    Cell Biochem Biophys; 2005; 43(2):289-330. PubMed ID: 16049352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NADPH oxidase DUOX1 promotes long-term persistence of oxidative stress after an exposure to irradiation.
    Ameziane-El-Hassani R; Talbot M; de Souza Dos Santos MC; Al Ghuzlan A; Hartl D; Bidart JM; De Deken X; Miot F; Diallo I; de Vathaire F; Schlumberger M; Dupuy C
    Proc Natl Acad Sci U S A; 2015 Apr; 112(16):5051-6. PubMed ID: 25848056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ROS and RNS signalling: adaptive redox switches through oxidative/nitrosative protein modifications.
    Moldogazieva NT; Mokhosoev IM; Feldman NB; Lutsenko SV
    Free Radic Res; 2018 May; 52(5):507-543. PubMed ID: 29589770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protective Effect of Sirt1 against Radiation-Induced Damage.
    Qin H; Zhang H; Zhang S; Zhu S; Wang H
    Radiat Res; 2021 Dec; 196(6):647-657. PubMed ID: 34459925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitric oxide synthase inhibition and oxidative stress in cardiovascular diseases: possible therapeutic targets?
    Rochette L; Lorin J; Zeller M; Guilland JC; Lorgis L; Cottin Y; Vergely C
    Pharmacol Ther; 2013 Dec; 140(3):239-57. PubMed ID: 23859953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NADPH oxidase and uncoupled nitric oxide synthase are major sources of reactive oxygen species in oral squamous cell carcinoma. Potential implications for immune regulation in high oxidative stress conditions.
    Czesnikiewicz-Guzik M; Lorkowska B; Zapala J; Czajka M; Szuta M; Loster B; Guzik TJ; Korbut R
    J Physiol Pharmacol; 2008 Mar; 59(1):139-52. PubMed ID: 18441394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cells redox environment modulates BRCA1 expression and DNA homologous recombination repair.
    Wilson A; Yakovlev VA
    Free Radic Biol Med; 2016 Dec; 101():190-201. PubMed ID: 27771433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidative stress, DNA methylation and carcinogenesis.
    Franco R; Schoneveld O; Georgakilas AG; Panayiotidis MI
    Cancer Lett; 2008 Jul; 266(1):6-11. PubMed ID: 18372104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.