These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 31781489)

  • 1. The Induction of a Permissive Environment to Promote T Cell Immune Evasion in Acute Myeloid Leukemia: The Metabolic Perspective.
    Mougiakakos D
    Front Oncol; 2019; 9():1166. PubMed ID: 31781489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The potential role of the thymus in immunotherapies for acute myeloid leukemia.
    Hino C; Xu Y; Xiao J; Baylink DJ; Reeves ME; Cao H
    Front Immunol; 2023; 14():1102517. PubMed ID: 36814919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CD33/CD3-bispecific T-cell engaging (BiTE®) antibody construct targets monocytic AML myeloid-derived suppressor cells.
    Jitschin R; Saul D; Braun M; Tohumeken S; Völkl S; Kischel R; Lutteropp M; Dos Santos C; Mackensen A; Mougiakakos D
    J Immunother Cancer; 2018 Nov; 6(1):116. PubMed ID: 30396365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unveiling T cell evasion mechanisms to immune checkpoint inhibitors in acute myeloid leukemia.
    Gurska L; Gritsman K
    Cancer Drug Resist; 2023; 6(3):674-687. PubMed ID: 37842238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immune evasion mechanisms in acute myeloid leukemia: A focus on immune checkpoint pathways.
    Taghiloo S; Asgarian-Omran H
    Crit Rev Oncol Hematol; 2021 Jan; 157():103164. PubMed ID: 33271388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redirecting the Immune Microenvironment in Acute Myeloid Leukemia.
    Sendker S; Reinhardt D; Niktoreh N
    Cancers (Basel); 2021 Mar; 13(6):. PubMed ID: 33804676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The progress and current status of immunotherapy in acute myeloid leukemia.
    Yang D; Zhang X; Zhang X; Xu Y
    Ann Hematol; 2017 Dec; 96(12):1965-1982. PubMed ID: 29080982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunotherapy for acute myeloid leukemia (AML): a potent alternative therapy.
    Acheampong DO; Adokoh CK; Asante DB; Asiamah EA; Barnie PA; Bonsu DOM; Kyei F
    Biomed Pharmacother; 2018 Jan; 97():225-232. PubMed ID: 29091870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Linking Immunoevasion and Metabolic Reprogramming in B-Cell-Derived Lymphomas.
    Böttcher M; Baur R; Stoll A; Mackensen A; Mougiakakos D
    Front Oncol; 2020; 10():594782. PubMed ID: 33251150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Novel therapies for pediatric acute myeloid leukemia: building future strategies through incorporation of treatment currently used in adults].
    Moritake H
    Rinsho Ketsueki; 2020; 61(6):665-672. PubMed ID: 32624541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural killer cell immune escape in acute myeloid leukemia.
    Lion E; Willemen Y; Berneman ZN; Van Tendeloo VF; Smits EL
    Leukemia; 2012 Sep; 26(9):2019-26. PubMed ID: 22446501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of the immunosuppressive microenvironment in acute myeloid leukemia development and treatment.
    Isidori A; Salvestrini V; Ciciarello M; Loscocco F; Visani G; Parisi S; Lecciso M; Ocadlikova D; Rossi L; Gabucci E; Clissa C; Curti A
    Expert Rev Hematol; 2014 Dec; 7(6):807-18. PubMed ID: 25227702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acute myeloid leukemia.
    Stone RM; O'Donnell MR; Sekeres MA
    Hematology Am Soc Hematol Educ Program; 2004; ():98-117. PubMed ID: 15561679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting the Immune Microenvironment in Acute Myeloid Leukemia: A Focus on T Cell Immunity.
    Lamble AJ; Lind EF
    Front Oncol; 2018; 8():213. PubMed ID: 29951373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HLA-DPB1 mismatch alleles represent powerful leukemia rejection antigens in CD4 T-cell immunotherapy after allogeneic stem-cell transplantation.
    Herr W; Eichinger Y; Beshay J; Bloetz A; Vatter S; Mirbeth C; Distler E; Hartwig UF; Thomas S
    Leukemia; 2017 Feb; 31(2):434-445. PubMed ID: 27479183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulatory T cells-derived IL-35 promotes the growth of adult acute myeloid leukemia blasts.
    Tao Q; Pan Y; Wang Y; Wang H; Xiong S; Li Q; Wang J; Tao L; Wang Z; Wu F; Zhang R; Zhai Z
    Int J Cancer; 2015 Nov; 137(10):2384-93. PubMed ID: 25866142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New approaches for the immunotherapy of acute myeloid leukemia.
    Geiger TL; Rubnitz JE
    Discov Med; 2015 Apr; 19(105):275-84. PubMed ID: 25977190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acute myeloid leukemia and novel biological treatments: monoclonal antibodies and cell-based gene-modified immune effectors.
    Tettamanti S; Magnani CF; Biondi A; Biagi E
    Immunol Lett; 2013; 155(1-2):43-6. PubMed ID: 24076117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comprehensive analysis of primary acute myeloid leukemia identifies biomarkers predicting susceptibility to human allogeneic Vγ9Vδ2 T cells.
    Gundermann S; Klinker E; Kimmel B; Flierl U; Wilhelm M; Einsele H; Kunzmann V
    J Immunother; 2014; 37(6):321-30. PubMed ID: 24911793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acute Myeloid Leukemia Cells Express ICOS Ligand to Promote the Expansion of Regulatory T Cells.
    Han Y; Dong Y; Yang Q; Xu W; Jiang S; Yu Z; Yu K; Zhang S
    Front Immunol; 2018; 9():2227. PubMed ID: 30319662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.