These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 31781783)
1. Predicted genetic gains from introgressing chromosome segments from exotic germplasm into an elite soybean cultivar. Ru S; Bernardo R Theor Appl Genet; 2020 Feb; 133(2):605-614. PubMed ID: 31781783 [TBL] [Abstract][Full Text] [Related]
2. QTL in mega-environments: I. Universal and specific seed yield QTL detected in a population derived from a cross of high-yielding adapted x high-yielding exotic soybean lines. Palomeque L; Li-Jun L; Li W; Hedges B; Cober ER; Rajcan I Theor Appl Genet; 2009 Aug; 119(3):417-27. PubMed ID: 19462148 [TBL] [Abstract][Full Text] [Related]
3. QTL in mega-environments: II. Agronomic trait QTL co-localized with seed yield QTL detected in a population derived from a cross of high-yielding adapted x high-yielding exotic soybean lines. Palomeque L; Li-Jun L; Li W; Hedges B; Cober ER; Rajcan I Theor Appl Genet; 2009 Aug; 119(3):429-36. PubMed ID: 19462149 [TBL] [Abstract][Full Text] [Related]
4. Nested association mapping of important agronomic traits in three interspecific soybean populations. Beche E; Gillman JD; Song Q; Nelson R; Beissinger T; Decker J; Shannon G; Scaboo AM Theor Appl Genet; 2020 Mar; 133(3):1039-1054. PubMed ID: 31974666 [TBL] [Abstract][Full Text] [Related]
5. Identification of positive yield QTL alleles from exotic soybean germplasm in two backcross populations. Kim KS; Diers BW; Hyten DL; Rouf Mian MA; Shannon JG; Nelson RL Theor Appl Genet; 2012 Oct; 125(6):1353-69. PubMed ID: 22869284 [TBL] [Abstract][Full Text] [Related]
6. Introgression of novel genetic diversity to improve soybean yield. Hegstad JM; Nelson RL; Renny-Byfield S; Feng L; Chaky JM Theor Appl Genet; 2019 Sep; 132(9):2541-2552. PubMed ID: 31209537 [TBL] [Abstract][Full Text] [Related]
7. Introgression of a quantitative trait locus for yield from Glycine soja into commercial soybean cultivars. Concibido VC; La Vallee B; McLaird P; Pineda N; Meyer J; Hummel L; Yang J; Wu K; Delannay X Theor Appl Genet; 2003 Feb; 106(4):575-82. PubMed ID: 12595984 [TBL] [Abstract][Full Text] [Related]
8. Genetic basis of soybean adaptation to North American vs. Asian mega-environments in two independent populations from Canadian × Chinese crosses. Rossi ME; Orf JH; Liu LJ; Dong Z; Rajcan I Theor Appl Genet; 2013 Jul; 126(7):1809-23. PubMed ID: 23595202 [TBL] [Abstract][Full Text] [Related]
9. Identification and molecular mapping of a major quantitative trait locus underlying branch angle in soybean. Clark CB; Wang W; Wang Y; Fear GJ; Wen Z; Wang D; Ren B; Ma J Theor Appl Genet; 2022 Mar; 135(3):777-784. PubMed ID: 34779894 [TBL] [Abstract][Full Text] [Related]
10. Genetic control of soybean seed oil: I. QTL and genes associated with seed oil concentration in RIL populations derived from crossing moderately high-oil parents. Eskandari M; Cober ER; Rajcan I Theor Appl Genet; 2013 Feb; 126(2):483-95. PubMed ID: 23192670 [TBL] [Abstract][Full Text] [Related]
11. Comparative selective signature analysis and high-resolution GWAS reveal a new candidate gene controlling seed weight in soybean. Zhang W; Xu W; Zhang H; Liu X; Cui X; Li S; Song L; Zhu Y; Chen X; Chen H Theor Appl Genet; 2021 May; 134(5):1329-1341. PubMed ID: 33507340 [TBL] [Abstract][Full Text] [Related]
12. Characterizing the impact of an exotic soybean line on elite cultivar development. Stewart-Brown BB; Vaughn JN; Carter TE; Li Z PLoS One; 2020; 15(7):e0235434. PubMed ID: 32649700 [TBL] [Abstract][Full Text] [Related]
13. Mapping of quantitative trait loci for canopy-wilting trait in soybean (Glycine max L. Merr). Abdel-Haleem H; Carter TE; Purcell LC; King CA; Ries LL; Chen P; Schapaugh W; Sinclair TR; Boerma HR Theor Appl Genet; 2012 Sep; 125(5):837-46. PubMed ID: 22566068 [TBL] [Abstract][Full Text] [Related]
14. Seed and agronomic QTL in low linolenic acid, lipoxygenase-free soybean (Glycine max (L.) Merrill) germplasm. Reinprecht Y; Poysa VW; Yu K; Rajcan I; Ablett GR; Pauls KP Genome; 2006 Dec; 49(12):1510-27. PubMed ID: 17426766 [TBL] [Abstract][Full Text] [Related]
15. QTL Location and Epistatic Effect Analysis of 100-Seed Weight Using Wild Soybean (Glycine soja Sieb. & Zucc.) Chromosome Segment Substitution Lines. Xin D; Qi Z; Jiang H; Hu Z; Zhu R; Hu J; Han H; Hu G; Liu C; Chen Q PLoS One; 2016; 11(3):e0149380. PubMed ID: 26934088 [TBL] [Abstract][Full Text] [Related]
16. Mapping and validation of simple sequence repeat markers linked to a major gene controlling seed cadmium accumulation in soybean [Glycine max (L.) Merr]. Jegadeesan S; Yu K; Poysa V; Gawalko E; Morrison MJ; Shi C; Cober E Theor Appl Genet; 2010 Jul; 121(2):283-94. PubMed ID: 20224890 [TBL] [Abstract][Full Text] [Related]
18. QTLs for resistance to Phomopsis seed decay are associated with days to maturity in soybean (Glycine max). Sun S; Kim MY; Van K; Lee YW; Li B; Lee SH Theor Appl Genet; 2013 Aug; 126(8):2029-38. PubMed ID: 23702513 [TBL] [Abstract][Full Text] [Related]
19. Genome-wide association study of seed protein, oil and amino acid contents in soybean from maturity groups I to IV. Lee S; Van K; Sung M; Nelson R; LaMantia J; McHale LK; Mian MAR Theor Appl Genet; 2019 Jun; 132(6):1639-1659. PubMed ID: 30806741 [TBL] [Abstract][Full Text] [Related]
20. Combining QTL-seq and linkage mapping to fine map a wild soybean allele characteristic of greater plant height. Zhang X; Wang W; Guo N; Zhang Y; Bu Y; Zhao J; Xing H BMC Genomics; 2018 Mar; 19(1):226. PubMed ID: 29587637 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]