These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 31781866)

  • 1. Impact of the Environment upon the Candida albicans Cell Wall and Resultant Effects upon Immune Surveillance.
    Childers DS; Avelar GM; Bain JM; Larcombe DE; Pradhan A; Budge S; Heaney H; Brown AJP
    Curr Top Microbiol Immunol; 2020; 425():297-330. PubMed ID: 31781866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dressed to impress: impact of environmental adaptation on the Candida albicans cell wall.
    Hall RA
    Mol Microbiol; 2015 Jul; 97(1):7-17. PubMed ID: 25846717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mannosylation in Candida albicans: role in cell wall function and immune recognition.
    Hall RA; Gow NA
    Mol Microbiol; 2013 Dec; 90(6):1147-61. PubMed ID: 24125554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypoxia Promotes Immune Evasion by Triggering β-Glucan Masking on the Candida albicans Cell Surface via Mitochondrial and cAMP-Protein Kinase A Signaling.
    Pradhan A; Avelar GM; Bain JM; Childers DS; Larcombe DE; Netea MG; Shekhova E; Munro CA; Brown GD; Erwig LP; Gow NAR; Brown AJP
    mBio; 2018 Nov; 9(6):. PubMed ID: 30401773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Innate immune response to Candida auris.
    Holt AM; Nett JE
    Curr Opin Microbiol; 2024 Aug; 80():102510. PubMed ID: 38964276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neutrophil Attack Triggers Extracellular Trap-Dependent Candida Cell Wall Remodeling and Altered Immune Recognition.
    Hopke A; Nicke N; Hidu EE; Degani G; Popolo L; Wheeler RT
    PLoS Pathog; 2016 May; 12(5):e1005644. PubMed ID: 27223610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Importance of the Candida albicans cell wall during commensalism and infection.
    Gow NA; Hube B
    Curr Opin Microbiol; 2012 Aug; 15(4):406-12. PubMed ID: 22609181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth of Candida albicans cells on the physiologically relevant carbon source lactate affects their recognition and phagocytosis by immune cells.
    Ene IV; Cheng SC; Netea MG; Brown AJ
    Infect Immun; 2013 Jan; 81(1):238-48. PubMed ID: 23115042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evasion of Immune Surveillance in Low Oxygen Environments Enhances Candida albicans Virulence.
    Lopes JP; Stylianou M; Backman E; Holmberg S; Jass J; Claesson R; Urban CF
    mBio; 2018 Nov; 9(6):. PubMed ID: 30401781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mnn10 Maintains Pathogenicity in Candida albicans by Extending α-1,6-Mannose Backbone to Evade Host Dectin-1 Mediated Antifungal Immunity.
    Zhang SQ; Zou Z; Shen H; Shen SS; Miao Q; Huang X; Liu W; Li LP; Chen SM; Yan L; Zhang JD; Zhao JJ; Xu GT; An MM; Jiang YY
    PLoS Pathog; 2016 May; 12(5):e1005617. PubMed ID: 27144456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antibody response to Candida albicans cell wall antigens.
    López-Ribot JL; Casanova M; Murgui A; Martínez JP
    FEMS Immunol Med Microbiol; 2004 Jul; 41(3):187-96. PubMed ID: 15196567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Looking into Candida albicans infection, host response, and antifungal strategies.
    Wang Y
    Virulence; 2015; 6(4):307-8. PubMed ID: 25590793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The impact of the Fungus-Host-Microbiota interplay upon Candida albicans infections: current knowledge and new perspectives.
    d'Enfert C; Kaune AK; Alaban LR; Chakraborty S; Cole N; Delavy M; Kosmala D; Marsaux B; Fróis-Martins R; Morelli M; Rosati D; Valentine M; Xie Z; Emritloll Y; Warn PA; Bequet F; Bougnoux ME; Bornes S; Gresnigt MS; Hube B; Jacobsen ID; Legrand M; Leibundgut-Landmann S; Manichanh C; Munro CA; Netea MG; Queiroz K; Roget K; Thomas V; Thoral C; Van den Abbeele P; Walker AW; Brown AJP
    FEMS Microbiol Rev; 2021 May; 45(3):. PubMed ID: 33232448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions between macrophages and cell wall oligosaccharides of Candida albicans.
    Mora-Montes HM; McKenzie C; Bain JM; Lewis LE; Erwig LP; Gow NA
    Methods Mol Biol; 2012; 845():247-60. PubMed ID: 22328379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive immune responses to Candida albicans infection.
    Richardson JP; Moyes DL
    Virulence; 2015; 6(4):327-37. PubMed ID: 25607781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stage specific assessment of Candida albicans phagocytosis by macrophages identifies cell wall composition and morphogenesis as key determinants.
    Lewis LE; Bain JM; Lowes C; Gillespie C; Rudkin FM; Gow NA; Erwig LP
    PLoS Pathog; 2012; 8(3):e1002578. PubMed ID: 22438806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An integrated model of the recognition of Candida albicans by the innate immune system.
    Netea MG; Brown GD; Kullberg BJ; Gow NA
    Nat Rev Microbiol; 2008 Jan; 6(1):67-78. PubMed ID: 18079743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptation of Candida albicans to environmental pH induces cell wall remodelling and enhances innate immune recognition.
    Sherrington SL; Sorsby E; Mahtey N; Kumwenda P; Lenardon MD; Brown I; Ballou ER; MacCallum DM; Hall RA
    PLoS Pathog; 2017 May; 13(5):e1006403. PubMed ID: 28542528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epitope Shaving Promotes Fungal Immune Evasion.
    Childers DS; Avelar GM; Bain JM; Pradhan A; Larcombe DE; Netea MG; Erwig LP; Gow NAR; Brown AJP
    mBio; 2020 Jul; 11(4):. PubMed ID: 32636248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interplay between Candida albicans and the antimicrobial peptide armory.
    Swidergall M; Ernst JF
    Eukaryot Cell; 2014 Aug; 13(8):950-7. PubMed ID: 24951441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.