BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 31782004)

  • 21. Association of Infradian Rhythms of Motor Activity, Concentration of Glucocorticoid Hormones, and One-Minute-Step Oscillations of Body Temperature with Intensity of Fluctuations of Secondary Cosmic Rays.
    Diatroptov ME; Diatroptova MA
    Bull Exp Biol Med; 2022 Mar; 172(5):592-597. PubMed ID: 35352252
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Seasonal rhythms in the functioning of the endocrine system of hibernating mammals].
    Kolpakov MG; Kolaeva SG; Shaburova GS
    Usp Fiziol Nauk; 1972; 3(1):52-68. PubMed ID: 4351110
    [No Abstract]   [Full Text] [Related]  

  • 23. Hibernation and circadian rhythms of body temperature in free-living Arctic ground squirrels.
    Williams CT; Barnes BM; Richter M; Buck CL
    Physiol Biochem Zool; 2012; 85(4):397-404. PubMed ID: 22705489
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Studies on the physiology of the hibernating hedgehog. 16 Variation in the nuclear sizes of cells of the supraoptic nucleus of hedgehog during circadian, hibernation, and annual cycles.
    Suomalainen P; Walin T
    Ann Acad Sci Fenn Biol; 1972; (192):1-5. PubMed ID: 4680243
    [No Abstract]   [Full Text] [Related]  

  • 25. Circadian and ultradian patterns of HPA-axis activity in rodents: Significance for brain functionality.
    den Boon FS; Sarabdjitsingh RA
    Best Pract Res Clin Endocrinol Metab; 2017 Oct; 31(5):445-457. PubMed ID: 29223280
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [The temporal characteristics of "winter" paradoxical sleep in the hibernating suslik Citellus major].
    Pastukhov IuF; Afanas'ev SV; Fedorova NV; Chepkasov IE
    Zh Evol Biokhim Fiziol; 1995; 31(3):299-306. PubMed ID: 7483921
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Body Temperature Dynamics in Small Mammals and Birds in 10-120-min Period Range.
    Diatroptov MЕ; Panchelyuga VA; Panchelyuga MS
    Bull Exp Biol Med; 2020 Oct; 169(6):765-770. PubMed ID: 33104911
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Maintenance of biological rhythms during hibernation in Eastern woodchucks (Marmota monax).
    Zervanos SM; Salsbury CM; Brown JK
    J Comp Physiol B; 2009 May; 179(4):411-8. PubMed ID: 19107488
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultradian Biorhythms of C57BL/6 Mice Body Temperature under Constant Illumination or during Natural Day-Night Cycle.
    Diatroptov ME; Diatroptova MA; Aleksankina VV; Kosyreva AM
    Bull Exp Biol Med; 2020 Jul; 169(3):388-392. PubMed ID: 32748138
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Physiological Rhythms and Biological Variation of Biomolecules: The Road to Personalized Laboratory Medicine.
    Coskun A; Zarepour A; Zarrabi A
    Int J Mol Sci; 2023 Mar; 24(7):. PubMed ID: 37047252
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Timing of torpor bouts during hibernation in European hamsters (Cricetus cricetus L.).
    Wassmer T; Wollnik F
    J Comp Physiol B; 1997 May; 167(4):270-9. PubMed ID: 9203368
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Beyond day and night: The importance of ultradian rhythms in mouse physiology.
    Škop V; Liu N; Xiao C; Stinson E; Chen KY; Hall KD; Piaggi P; Gavrilova O; Reitman ML
    Mol Metab; 2024 Jun; 84():101946. PubMed ID: 38657735
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Implicating a Temperature-Dependent Clock in the Regulation of Torpor Bout Duration in Classic Hibernation.
    Malan A; Ciocca D; Challet E; Pévet P
    J Biol Rhythms; 2018 Dec; 33(6):626-636. PubMed ID: 30189779
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Circahoralian Rhythms of Body Temperature in Mammals and Birds with Different Metabolism Levels.
    Diatroptov ME; Panchelyuga VA; Panchelyuga MS; Surov AV
    Dokl Biol Sci; 2020 Sep; 494(1):228-231. PubMed ID: 33083878
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Coupling-dependent metabolic ultradian rhythms in confluent cells.
    Yang S; Yamazaki S; Cox KH; Huang YL; Miller EW; Takahashi JS
    Proc Natl Acad Sci U S A; 2022 Nov; 119(45):e2211142119. PubMed ID: 36322771
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The development of ultradian and circadian rhythms in premature babies maintained in constant conditions.
    Tenreiro S; Dowse HB; D'Souza S; Minors D; Chiswick M; Simms D; Waterhouse J
    Early Hum Dev; 1991 Nov; 27(1-2):33-52. PubMed ID: 1802663
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Possible External Factors Determining Ultradian (4-20-min) Rhythms of Body Temperature.
    Diatroptov ME; Diatroptova MA
    Bull Exp Biol Med; 2021 Oct; 171(6):783-788. PubMed ID: 34709514
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of Heliogeophysical and Atmospheric Factors on the Degree of Synchronization of Ultradian Rhythms of Body Temperature in Mice.
    Diatroptov ME; Arseniev GN; Ligun NV; Diatroptova MA; Dorokhov VB
    Bull Exp Biol Med; 2023 Jul; 175(3):382-387. PubMed ID: 37561378
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Persistence of circadian rhythmicity in hibernating ground squirrels.
    Grahn DA; Miller JD; Houng VS; Heller HC
    Am J Physiol; 1994 Apr; 266(4 Pt 2):R1251-8. PubMed ID: 8184969
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Circadian and ultradian rhythms in the crayfish caudal photoreceptor.
    Rodríguez-Sosa L; Calderón-Rosete G; Flores G
    Synapse; 2008 Sep; 62(9):643-52. PubMed ID: 18563837
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.