These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 31782467)
1. Flexible and fully implantable upconversion device for wireless optogenetic stimulation of the spinal cord in behaving animals. Wang Y; Xie K; Yue H; Chen X; Luo X; Liao Q; Liu M; Wang F; Shi P Nanoscale; 2020 Jan; 12(4):2406-2414. PubMed ID: 31782467 [TBL] [Abstract][Full Text] [Related]
2. Tetherless near-infrared control of brain activity in behaving animals using fully implantable upconversion microdevices. Wang Y; Lin X; Chen X; Chen X; Xu Z; Zhang W; Liao Q; Duan X; Wang X; Liu M; Wang F; He J; Shi P Biomaterials; 2017 Oct; 142():136-148. PubMed ID: 28735174 [TBL] [Abstract][Full Text] [Related]
3. 3D Upconversion Barcodes for Combinatory Wireless Neuromodulation in Behaving Animals. Lin X; Sun T; Tang M; Yang A; Yan-Do R; Chen D; Gao Y; Duan X; Kai JJ; Wang F; Shi P Adv Healthc Mater; 2022 Jul; 11(13):e2200304. PubMed ID: 35426262 [TBL] [Abstract][Full Text] [Related]
4. Core-Shell-Shell Upconversion Nanoparticles with Enhanced Emission for Wireless Optogenetic Inhibition. Lin X; Chen X; Zhang W; Sun T; Fang P; Liao Q; Chen X; He J; Liu M; Wang F; Shi P Nano Lett; 2018 Feb; 18(2):948-956. PubMed ID: 29278506 [TBL] [Abstract][Full Text] [Related]
6. Multiplexed Optogenetic Stimulation of Neurons with Spectrum-Selective Upconversion Nanoparticles. Lin X; Wang Y; Chen X; Yang R; Wang Z; Feng J; Wang H; Lai KWC; He J; Wang F; Shi P Adv Healthc Mater; 2017 Sep; 6(17):. PubMed ID: 28795515 [TBL] [Abstract][Full Text] [Related]
8. Towards minimally invasive deep brain stimulation and imaging: A near-infrared upconversion approach. Chen S; Wu J; Cai A; Gonzalez N; Yin R Neurosci Res; 2020 Mar; 152():59-65. PubMed ID: 31987879 [TBL] [Abstract][Full Text] [Related]
9. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics. Chen S; Weitemier AZ; Zeng X; He L; Wang X; Tao Y; Huang AJY; Hashimotodani Y; Kano M; Iwasaki H; Parajuli LK; Okabe S; Teh DBL; All AH; Tsutsui-Kimura I; Tanaka KF; Liu X; McHugh TJ Science; 2018 Feb; 359(6376):679-684. PubMed ID: 29439241 [TBL] [Abstract][Full Text] [Related]
10. Flexible Optogenetic Transducer Device for Remote Neuron Modulation Using Highly Upconversion-Efficient Dendrite-Like Gold Inverse Opaline Structure. Chu CY; Wu PW; Chen JC; Tsou NT; Lin YY; Lo YC; Li SJ; Chang CW; Chen BW; Tsai CL; Chen YY; Liu TC; Chen SY Adv Healthc Mater; 2022 Jun; 11(11):e2101310. PubMed ID: 34971080 [TBL] [Abstract][Full Text] [Related]
11. Microscale optoelectronic infrared-to-visible upconversion devices and their use as injectable light sources. Ding H; Lu L; Shi Z; Wang D; Li L; Li X; Ren Y; Liu C; Cheng D; Kim H; Giebink NC; Wang X; Yin L; Zhao L; Luo M; Sheng X Proc Natl Acad Sci U S A; 2018 Jun; 115(26):6632-6637. PubMed ID: 29891705 [TBL] [Abstract][Full Text] [Related]
12. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice. Montgomery KL; Yeh AJ; Ho JS; Tsao V; Mohan Iyer S; Grosenick L; Ferenczi EA; Tanabe Y; Deisseroth K; Delp SL; Poon AS Nat Methods; 2015 Oct; 12(10):969-74. PubMed ID: 26280330 [TBL] [Abstract][Full Text] [Related]
13. An implantable optogenetic stimulator wirelessly powered by flexible photovoltaics with near-infrared (NIR) light. Jeong J; Jung J; Jung D; Kim J; Ju H; Kim T; Lee J Biosens Bioelectron; 2021 May; 180():113139. PubMed ID: 33714161 [TBL] [Abstract][Full Text] [Related]
14. Near-infrared light remotely up-regulate autophagy with spatiotemporal precision via upconversion optogenetic nanosystem. Pan H; Wang H; Yu J; Huang X; Hao Y; Zhang C; Ji W; Yang M; Gong X; Wu X; Chang J Biomaterials; 2019 Apr; 199():22-31. PubMed ID: 30735893 [TBL] [Abstract][Full Text] [Related]
15. Applications of upconversion nanoparticles in cellular optogenetics. Lin Y; Yao Y; Zhang W; Fang Q; Zhang L; Zhang Y; Xu Y Acta Biomater; 2021 Nov; 135():1-12. PubMed ID: 34461347 [TBL] [Abstract][Full Text] [Related]
16. Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications. Wu X; Zhang Y; Takle K; Bilsel O; Li Z; Lee H; Zhang Z; Li D; Fan W; Duan C; Chan EM; Lois C; Xiang Y; Han G ACS Nano; 2016 Jan; 10(1):1060-6. PubMed ID: 26736013 [TBL] [Abstract][Full Text] [Related]
18. Construction of a Flexible Optogenetic Device for Multisite and Multiregional Optical Stimulation Through Flexible µ-LED Displays on the Cerebral Cortex. Shang X; Ling W; Chen Y; Li C; Huang X Small; 2023 Sep; 19(39):e2302241. PubMed ID: 37260144 [TBL] [Abstract][Full Text] [Related]
19. Near-Infrared Manipulation of Membrane Ion Channels via Upconversion Optogenetics. Wang Z; Hu M; Ai X; Zhang Z; Xing B Adv Biosyst; 2019 Jan; 3(1):e1800233. PubMed ID: 32627341 [TBL] [Abstract][Full Text] [Related]
20. An upconversion nanoparticle-integrated fibrillar scaffold combined with a NIR-optogenetic strategy to regulate neural cell performance. Wu C; Su B; Xin N; Tang J; Xiao J; Luo H; Wei D; Luo F; Sun J; Fan H J Mater Chem B; 2023 Jan; 11(2):430-440. PubMed ID: 36524427 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]