BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 31782779)

  • 1. Efficient, D-glucose insensitive, growth on D-xylose by an evolutionary engineered Saccharomyces cerevisiae strain.
    Nijland JG; Li X; Shin HY; de Waal PP; Driessen AJM
    FEMS Yeast Res; 2019 Dec; 19(8):. PubMed ID: 31782779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering of an endogenous hexose transporter into a specific D-xylose transporter facilitates glucose-xylose co-consumption in Saccharomyces cerevisiae.
    Nijland JG; Shin HY; de Jong RM; de Waal PP; Klaassen P; Driessen AJ
    Biotechnol Biofuels; 2014; 7(1):168. PubMed ID: 25505932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Xylose and xylose/glucose co-fermentation by recombinant Saccharomyces cerevisiae strains expressing individual hexose transporters.
    Gonçalves DL; Matsushika A; de Sales BB; Goshima T; Bon EP; Stambuk BU
    Enzyme Microb Technol; 2014 Sep; 63():13-20. PubMed ID: 25039054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved Xylose Metabolism by a
    Nijland JG; Shin HY; Boender LGM; de Waal PP; Klaassen P; Driessen AJM
    Appl Environ Microbiol; 2017 Jun; 83(11):. PubMed ID: 28363963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. D-glucose overflow metabolism in an evolutionary engineered high-performance D-xylose consuming Saccharomyces cerevisiae strain.
    Nijland JG; Shin HY; Dore E; Rudinatha D; de Waal PP; Driessen AJM
    FEMS Yeast Res; 2021 Jan; 21(1):. PubMed ID: 33232441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose co-fermentation by a recombinant Saccharomyces yeast.
    Sedlak M; Ho NW
    Yeast; 2004 Jun; 21(8):671-84. PubMed ID: 15197732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased xylose affinity of Hxt2 through gene shuffling of hexose transporters in Saccharomyces cerevisiae.
    Nijland JG; Shin HY; de Waal PP; Klaassen P; Driessen AJM
    J Appl Microbiol; 2018 Feb; 124(2):503-510. PubMed ID: 29240974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An engineered cryptic Hxt11 sugar transporter facilitates glucose-xylose co-consumption in Saccharomyces cerevisiae.
    Shin HY; Nijland JG; de Waal PP; de Jong RM; Klaassen P; Driessen AJ
    Biotechnol Biofuels; 2015; 8():176. PubMed ID: 26535057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laboratory evolution for forced glucose-xylose co-consumption enables identification of mutations that improve mixed-sugar fermentation by xylose-fermenting Saccharomyces cerevisiae.
    Papapetridis I; Verhoeven MD; Wiersma SJ; Goudriaan M; van Maris AJA; Pronk JT
    FEMS Yeast Res; 2018 Sep; 18(6):. PubMed ID: 29771304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cloning novel sugar transporters from Scheffersomyces (Pichia) stipitis allowing D-xylose fermentation by recombinant Saccharomyces cerevisiae.
    de Sales BB; Scheid B; Gonçalves DL; Knychala MM; Matsushika A; Bon EP; Stambuk BU
    Biotechnol Lett; 2015 Oct; 37(10):1973-82. PubMed ID: 26087949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving pentose fermentation by preventing ubiquitination of hexose transporters in Saccharomyces cerevisiae.
    Nijland JG; Vos E; Shin HY; de Waal PP; Klaassen P; Driessen AJ
    Biotechnol Biofuels; 2016; 9():158. PubMed ID: 27468310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization.
    Krahulec S; Petschacher B; Wallner M; Longus K; Klimacek M; Nidetzky B
    Microb Cell Fact; 2010 Mar; 9():16. PubMed ID: 20219100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains.
    Wisselink HW; Toirkens MJ; Wu Q; Pronk JT; van Maris AJ
    Appl Environ Microbiol; 2009 Feb; 75(4):907-14. PubMed ID: 19074603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laboratory evolution of a glucose-phosphorylation-deficient, arabinose-fermenting S. cerevisiae strain reveals mutations in GAL2 that enable glucose-insensitive l-arabinose uptake.
    Verhoeven MD; Bracher JM; Nijland JG; Bouwknegt J; Daran JG; Driessen AJM; van Maris AJA; Pronk JT
    FEMS Yeast Res; 2018 Sep; 18(6):. PubMed ID: 29860442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose improves aerobic xylose consumption.
    Hector RE; Qureshi N; Hughes SR; Cotta MA
    Appl Microbiol Biotechnol; 2008 Sep; 80(4):675-84. PubMed ID: 18629494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward "homolactic" fermentation of glucose and xylose by engineered Saccharomyces cerevisiae harboring a kinetically efficient l-lactate dehydrogenase within pdc1-pdc5 deletion background.
    Novy V; Brunner B; Müller G; Nidetzky B
    Biotechnol Bioeng; 2017 Jan; 114(1):163-171. PubMed ID: 27426989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing ethanol yields through d-xylose and l-arabinose co-fermentation after construction of a novel high efficient l-arabinose-fermenting Saccharomyces cerevisiae strain.
    Caballero A; Ramos JL
    Microbiology (Reading); 2017 Apr; 163(4):442-452. PubMed ID: 28443812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced xylose fermentation by engineered yeast expressing NADH oxidase through high cell density inoculums.
    Zhang GC; Turner TL; Jin YS
    J Ind Microbiol Biotechnol; 2017 Mar; 44(3):387-395. PubMed ID: 28070721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving Xylose Utilization of Saccharomyces cerevisiae by Expressing the MIG1 Mutant from the Self-Flocculating Yeast SPSC01.
    Xu JR; Zhao XQ; Liu CG; Bai FW
    Protein Pept Lett; 2018; 25(2):202-207. PubMed ID: 29359658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deletion of D-ribulose-5-phosphate 3-epimerase (RPE1) induces simultaneous utilization of xylose and glucose in xylose-utilizing Saccharomyces cerevisiae.
    Shen MH; Song H; Li BZ; Yuan YJ
    Biotechnol Lett; 2015 May; 37(5):1031-6. PubMed ID: 25548118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.