These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 31782798)
1. Shape shifting by amphibious plants in dynamic hydrological niches. van Veen H; Sasidharan R New Phytol; 2021 Jan; 229(1):79-84. PubMed ID: 31782798 [TBL] [Abstract][Full Text] [Related]
2. Photosynthetic acclimation of terrestrial and submerged leaves in the amphibious plant Horiguchi G; Nemoto K; Yokoyama T; Hirotsu N AoB Plants; 2019 Apr; 11(2):plz009. PubMed ID: 30911367 [No Abstract] [Full Text] [Related]
3. Diving into the Water: Amphibious Plants as a Model for Investigating Plant Adaptations to Aquatic Environments. Koga H; Ikematsu S; Kimura S Annu Rev Plant Biol; 2024 Jul; 75(1):579-604. PubMed ID: 38424069 [TBL] [Abstract][Full Text] [Related]
4. Underwater photosynthesis in flooded terrestrial plants: a matter of leaf plasticity. Mommer L; Visser EJ Ann Bot; 2005 Sep; 96(4):581-9. PubMed ID: 16024559 [TBL] [Abstract][Full Text] [Related]
5. Photosynthetic consequences of phenotypic plasticity in response to submergence: Rumex palustris as a case study. Mommer L; Pons TL; Visser EJ J Exp Bot; 2006; 57(2):283-90. PubMed ID: 16291797 [TBL] [Abstract][Full Text] [Related]
6. Rewiring of hormones and light response pathways underlies the inhibition of stomatal development in an amphibious plant Rorippa aquatica underwater. Ikematsu S; Umase T; Shiozaki M; Nakayama S; Noguchi F; Sakamoto T; Hou H; Gohari G; Kimura S; Torii KU Curr Biol; 2023 Feb; 33(3):543-556.e4. PubMed ID: 36696900 [TBL] [Abstract][Full Text] [Related]
7. Identification of the unique molecular framework of heterophylly in the amphibious plant Callitriche palustris L. Koga H; Kojima M; Takebayashi Y; Sakakibara H; Tsukaya H Plant Cell; 2021 Oct; 33(10):3272-3292. PubMed ID: 34312675 [TBL] [Abstract][Full Text] [Related]
8. Underwater photosynthesis of submerged plants - recent advances and methods. Pedersen O; Colmer TD; Sand-Jensen K Front Plant Sci; 2013; 4():140. PubMed ID: 23734154 [TBL] [Abstract][Full Text] [Related]
9. A perspective on underwater photosynthesis in submerged terrestrial wetland plants. Colmer TD; Winkel A; Pedersen O AoB Plants; 2011; 2011():plr030. PubMed ID: 22476500 [TBL] [Abstract][Full Text] [Related]
10. Resistance to CO2 diffusion in cuticular membranes of amphibious plants and the implication for CO2 acquisition. Frost-Christensen H; Floto F Plant Cell Environ; 2007 Jan; 30(1):12-8. PubMed ID: 17177872 [TBL] [Abstract][Full Text] [Related]
11. The role of abscisic acid in disturbed stomatal response characteristics of Tradescantia virginiana during growth at high relative air humidity. Nejad AR; van Meeteren U J Exp Bot; 2007; 58(3):627-36. PubMed ID: 17175553 [TBL] [Abstract][Full Text] [Related]
12. Different photosynthetic inorganic carbon utilization strategies in the heteroblastic leaves of an aquatic plant Liao Z; Li P; Zhou J; Li W; Jiang HS Front Plant Sci; 2023; 14():1142848. PubMed ID: 37035085 [TBL] [Abstract][Full Text] [Related]
13. Dimorphic Leaf Development of the Aquatic Plant Koga H; Doll Y; Hashimoto K; Toyooka K; Tsukaya H Front Plant Sci; 2020; 11():269. PubMed ID: 32211013 [TBL] [Abstract][Full Text] [Related]
14. Nutrient availability and nutrient use efficiency in plants growing in the transition zone between land and water. Cavalli G; Baattrup-Pedersen A; Riis T Plant Biol (Stuttg); 2016 Mar; 18(2):301-6. PubMed ID: 26414531 [TBL] [Abstract][Full Text] [Related]
15. A dynamic leaf gas-exchange strategy is conserved in woody plants under changing ambient CO2 : evidence from carbon isotope discrimination in paleo and CO2 enrichment studies. Voelker SL; Brooks JR; Meinzer FC; Anderson R; Bader MK; Battipaglia G; Becklin KM; Beerling D; Bert D; Betancourt JL; Dawson TE; Domec JC; Guyette RP; Körner C; Leavitt SW; Linder S; Marshall JD; Mildner M; Ogée J; Panyushkina I; Plumpton HJ; Pregitzer KS; Saurer M; Smith AR; Siegwolf RT; Stambaugh MC; Talhelm AF; Tardif JC; Van de Water PK; Ward JK; Wingate L Glob Chang Biol; 2016 Feb; 22(2):889-902. PubMed ID: 26391334 [TBL] [Abstract][Full Text] [Related]
16. Leaf gas films delay salt entry and enhance underwater photosynthesis and internal aeration of Melilotus siculus submerged in saline water. Teakle NL; Colmer TD; Pedersen O Plant Cell Environ; 2014 Oct; 37(10):2339-49. PubMed ID: 24393094 [TBL] [Abstract][Full Text] [Related]
17. [A comparative study on chlorophyll content, chlorophyll fluorescence and diurnal course of leaf gas exchange of two ecotypes of banyan]. Zhao P; Sun G; Zeng X; Peng S; Mo X; Li Y Ying Yong Sheng Tai Xue Bao; 2000 Jun; 11(3):327-32. PubMed ID: 11767625 [TBL] [Abstract][Full Text] [Related]
18. Effects of light quality on leaf morphogenesis of a heterophyllous amphibious plant, Rotala hippuris. Momokawa N; Kadono Y; Kudoh H Ann Bot; 2011 Nov; 108(7):1299-306. PubMed ID: 21896573 [TBL] [Abstract][Full Text] [Related]
19. Reevaluation of the plant "gemstones": Calcium oxalate crystals sustain photosynthesis under drought conditions. Tooulakou G; Giannopoulos A; Nikolopoulos D; Bresta P; Dotsika E; Orkoula MG; Kontoyannis CG; Fasseas C; Liakopoulos G; Klapa MI; Karabourniotis G Plant Signal Behav; 2016 Sep; 11(9):e1215793. PubMed ID: 27471886 [TBL] [Abstract][Full Text] [Related]
20. Alterations in Rubisco activity and in stomatal behavior induce a daily rhythm in photosynthesis of aerial leaves in the amphibious-plant Nuphar lutea. Snir A; Gurevitz M; Marcus Y Photosynth Res; 2006 Dec; 90(3):233-42. PubMed ID: 17286188 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]