BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 31783449)

  • 1. Exploring how fire spread mode shapes the composition of pyrogenic carbon from burning forest litter fuels in a combustion wind tunnel.
    Surawski NC; Macdonald LM; Baldock JA; Sullivan AL; Roxburgh SH; Polglase PJ
    Sci Total Environ; 2020 Jan; 698():134306. PubMed ID: 31783449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Fire behavior of Quercus mongolica leaf litter fuelbed under zero-slope and no-wind conditions. II. Analysis and modelling of fireline intensity, fuel consumption, and combustion efficiency].
    Zhang JL; Liu BF; Di XY; Chu TF; Jin S
    Ying Yong Sheng Tai Xue Bao; 2013 Dec; 24(12):3381-90. PubMed ID: 24697055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatiotemporal variability of fire effects on soil carbon and nitrogen: A global meta-analysis.
    Li J; Pei J; Liu J; Wu J; Li B; Fang C; Nie M
    Glob Chang Biol; 2021 Sep; 27(17):4196-4206. PubMed ID: 34101948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying and addressing knowledge gaps for improving greenhouse gas emissions estimates from tropical peat forest fires.
    Volkova L; Krisnawati H; Adinugroho WC; Imanuddin R; Qirom MA; Santosa PB; Halwany W; Weston CJ
    Sci Total Environ; 2021 Apr; 763():142933. PubMed ID: 33268261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of experimental fuel additions on fire intensity and severity: unexpected carbon resilience of a neotropical forest.
    Brando PM; Oliveria-Santos C; Rocha W; Cury R; Coe MT
    Glob Chang Biol; 2016 Jul; 22(7):2516-25. PubMed ID: 26750627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The global pyrogenic carbon cycle and its impact on the level of atmospheric CO
    Landry JS; Matthews HD
    Glob Chang Biol; 2017 Aug; 23(8):3205-3218. PubMed ID: 27992954
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Litter Species Composition and Topographic Effects on Fuels and Modeled Fire Behavior in an Oak-Hickory Forest in the Eastern USA.
    Dickinson MB; Hutchinson TF; Dietenberger M; Matt F; Peters MP
    PLoS One; 2016; 11(8):e0159997. PubMed ID: 27536964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyrogenic organic matter production from wildfires: a missing sink in the global carbon cycle.
    Santín C; Doerr SH; Preston CM; González-Rodríguez G
    Glob Chang Biol; 2015 Apr; 21(4):1621-33. PubMed ID: 25378275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes to Cretaceous surface fire behaviour influenced the spread of the early angiosperms.
    Belcher CM; Hudspith VA
    New Phytol; 2017 Feb; 213(3):1521-1532. PubMed ID: 28079941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon balance of tropical peat forests at different fire history and implications for carbon emissions.
    Krisnawati H; Adinugroho WC; Imanuddin R; Suyoko ; Weston CJ; Volkova L
    Sci Total Environ; 2021 Jul; 779():146365. PubMed ID: 33744585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of fire spread, flame characteristic, fire intensity on particulate matter 2.5 released from surface fuel combustion of Pinus koraiensis plantation- A laboratory simulation study.
    Ning J; Yang G; Liu X; Geng D; Wang L; Li Z; Zhang Y; Di X; Sun L; Yu H
    Environ Int; 2022 Aug; 166():107352. PubMed ID: 35749994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative forecasting black (pyrogenic) carbon in soils by chemometric analysis of infrared spectra.
    De la Rosa JM; Jiménez-González MA; Jiménez-Morillo NT; Knicker H; Almendros G
    J Environ Manage; 2019 Dec; 251():109567. PubMed ID: 31569023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization, Quantification and Compound-specific Isotopic Analysis of Pyrogenic Carbon Using Benzene Polycarboxylic Acids (BPCA).
    Wiedemeier DB; Lang SQ; Gierga M; Abiven S; Bernasconi SM; Früh-Green GL; Hajdas I; Hanke UM; Hilf MD; McIntyre CP; Scheider MP; Smittenberg RH; Wacker L; Wiesenberg GL; Schmidt MW
    J Vis Exp; 2016 May; (111):. PubMed ID: 27214064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time combustion rate of wood charcoal in the heating fire basin: Direct measurement and its correlation to CO emissions.
    Deng M; Li J; Zhang S; Shan M; Baumgartner J; Carter E; Yang X
    Environ Pollut; 2019 Feb; 245():38-45. PubMed ID: 30408763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Abrupt fire regime change may cause landscape-wide loss of mature obligate seeder forests.
    Bowman DM; Murphy BP; Neyland DL; Williamson GJ; Prior LD
    Glob Chang Biol; 2014 Mar; 20(3):1008-15. PubMed ID: 24132866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Smoke exposure levels prediction following laboratory combustion of Pinus koraiensis plantation surface fuel.
    Ning J; Yang G; Zhang Y; Geng D; Wang L; Liu X; Li Z; Yu H; Zhang J; Di X
    Sci Total Environ; 2023 Jul; 881():163402. PubMed ID: 37054794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards a global assessment of pyrogenic carbon from vegetation fires.
    Santín C; Doerr SH; Kane ES; Masiello CA; Ohlson M; de la Rosa JM; Preston CM; Dittmar T
    Glob Chang Biol; 2016 Jan; 22(1):76-91. PubMed ID: 26010729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-frequency fire alters C : N : P stoichiometry in forest litter.
    Toberman H; Chen C; Lewis T; Elser JJ
    Glob Chang Biol; 2014 Jul; 20(7):2321-31. PubMed ID: 24132817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Burning rate of merged pool fire on the hollow square tray.
    Wang C; Guo J; Ding Y; Wen J; Lu S
    J Hazard Mater; 2015 Jun; 290():78-86. PubMed ID: 25746567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of fire on phosphorus forms in Sphagnum moss and peat soils of ombrotrophic bogs.
    Wang G; Yu X; Bao K; Xing W; Gao C; Lin Q; Lu X
    Chemosphere; 2015 Jan; 119():1329-1334. PubMed ID: 24630445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.