These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 31783453)

  • 1. Forecasting of bioaerosol concentration by a Back Propagation neural network model.
    Li X; Cheng X; Wu W; Wang Q; Tong Z; Zhang X; Deng D; Li Y
    Sci Total Environ; 2020 Jan; 698():134315. PubMed ID: 31783453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Application of artificial neural networks in forecasting the number of circulatory system diseases death toll].
    Zhang Y; Shao Y; Shang K; Wang S; Wang J
    Wei Sheng Yan Jiu; 2014 Sep; 43(5):774-8. PubMed ID: 25438533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Preliminary application of Back-Propagation artificial neural network model on the prediction of infectious diarrhea incidence in Shanghai].
    Li J; Gu JZ; Mao SH; Xiao WJ; Jin HM; Zheng YX; Wang YM; Hu JY
    Zhonghua Liu Xing Bing Xue Za Zhi; 2013 Dec; 34(12):1198-202. PubMed ID: 24518019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Application of artificial neural networks on the prediction of surface ozone concentrations].
    Shen LL; Wang YX; Duan L
    Huan Jing Ke Xue; 2011 Aug; 32(8):2231-5. PubMed ID: 22619942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forecasting of daily total atmospheric ozone in Isfahan.
    Yazdanpanah H; Karimi M; Hejazizadeh Z
    Environ Monit Assess; 2009 Oct; 157(1-4):235-41. PubMed ID: 18843548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Study on meteorological factors-based neural network model of malaria].
    Gao CY; Xiong HY; Yi D; Chai GJ; Yang XW; Liu L
    Zhonghua Liu Xing Bing Xue Za Zhi; 2003 Sep; 24(9):831-4. PubMed ID: 14521780
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [A preliminary study on the effects of meteorological factors on intracerebral hemorrhage death using the BP neural network model].
    Gao HL; Lan L; Qiao DJ; Zhao N; Yang JQ; Shao B; Jiao Z; Li H; Wang BY
    Zhonghua Liu Xing Bing Xue Za Zhi; 2012 Sep; 33(9):937-40. PubMed ID: 23290807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Midterm Power Load Forecasting Model Based on Kernel Principal Component Analysis and Back Propagation Neural Network with Particle Swarm Optimization.
    Liu Z; Sun X; Wang S; Pan M; Zhang Y; Ji Z
    Big Data; 2019 Jun; 7(2):130-138. PubMed ID: 31194587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long short-term memory neural network for air pollutant concentration predictions: Method development and evaluation.
    Li X; Peng L; Yao X; Cui S; Hu Y; You C; Chi T
    Environ Pollut; 2017 Dec; 231(Pt 1):997-1004. PubMed ID: 28898956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intercomparison of air quality data using principal component analysis, and forecasting of PM₁₀ and PM₂.₅ concentrations using artificial neural networks, in Thessaloniki and Helsinki.
    Voukantsis D; Karatzas K; Kukkonen J; Räsänen T; Karppinen A; Kolehmainen M
    Sci Total Environ; 2011 Mar; 409(7):1266-76. PubMed ID: 21276603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction Model for Airborne Microorganisms Using Particle Number Concentration as Surrogate Markers in Hospital Environment.
    Seo JH; Jeon HW; Choi JS; Sohn JR
    Int J Environ Res Public Health; 2020 Oct; 17(19):. PubMed ID: 33022969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Input strategy analysis for an air quality data modelling procedure at a local scale based on neural network.
    Ragosta M; D'Emilio M; Giorgio GA
    Environ Monit Assess; 2015 May; 187(5):307. PubMed ID: 25925158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel hybrid forecasting model for PM₁₀ and SO₂ daily concentrations.
    Wang P; Liu Y; Qin Z; Zhang G
    Sci Total Environ; 2015 Feb; 505():1202-12. PubMed ID: 25461118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of the optimal training principle and input variables in artificial neural network model for the biweekly chlorophyll-a prediction: a case study of the Yuqiao Reservoir, China.
    Liu Y; Xi DG; Li ZL
    PLoS One; 2015; 10(3):e0119082. PubMed ID: 25768650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of air pollutant concentration based on sparse response back-propagation training feedforward neural networks.
    Ding W; Zhang J; Leung Y
    Environ Sci Pollut Res Int; 2016 Oct; 23(19):19481-94. PubMed ID: 27384165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Forecasting air quality time series using deep learning.
    Freeman BS; Taylor G; Gharabaghi B; Thé J
    J Air Waste Manag Assoc; 2018 Aug; 68(8):866-886. PubMed ID: 29652217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a stacked ensemble model for forecasting and analyzing daily average PM
    Zhai B; Chen J
    Sci Total Environ; 2018 Sep; 635():644-658. PubMed ID: 29679837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ELoran Propagation Delay Prediction Model Based on a BP Neural Network for a Complex Meteorological Environment.
    Liu S; Guo W; Hua Y; Kou W
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The relationships between air pollutants, meteorological parameters and concentration of airborne fungal spores.
    Grinn-Gofroń A; Strzelczak A; Wolski T
    Environ Pollut; 2011 Feb; 159(2):602-8. PubMed ID: 21030122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Forecasting the seasonal pollen index by using a hidden Markov model combining meteorological and biological factors.
    Tseng YT; Kawashima S; Kobayashi S; Takeuchi S; Nakamura K
    Sci Total Environ; 2020 Jan; 698():134246. PubMed ID: 31505344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.