These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 31783711)

  • 1. Improving the Chemical Selectivity of an Electronic Nose to TNT, DNT and RDX Using Machine Learning.
    Gradišek A; van Midden M; Koterle M; Prezelj V; Strle D; Štefane B; Brodnik H; Trifkovič M; Kvasić I; Zupanič E; Muševič I
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31783711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical Selectivity and Sensitivity of a 16-Channel Electronic Nose for Trace Vapour Detection.
    Strle D; Štefane B; Trifkovič M; Van Miden M; Kvasić I; Zupanič E; Muševič I
    Sensors (Basel); 2017 Dec; 17(12):. PubMed ID: 29292764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of nitroaromatic, nitramine, and nitrate ester explosives in soil by gas chromatography and an electron capture detector.
    Walsh ME
    Talanta; 2001 May; 54(3):427-38. PubMed ID: 18968268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly selective reduced graphene oxide (rGO) sensor based on a peptide aptamer receptor for detecting explosives.
    Lee K; Yoo YK; Chae MS; Hwang KS; Lee J; Kim H; Hur D; Lee JH
    Sci Rep; 2019 Jul; 9(1):10297. PubMed ID: 31311944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly sensitive and selective fluorometric/electrochemical dual-channel sensors for TNT and DNT explosives.
    Ma H; Yao L; Li P; Ablikim O; Cheng Y; Zhang M
    Chemistry; 2014 Sep; 20(37):11655-8. PubMed ID: 25070924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning-assisted array from fluorescent conjugated microporous polymers for multiple explosives recognition.
    Gao R; Wei XS; Zhao W; Xie A; Dong W
    Anal Chim Acta; 2022 Feb; 1192():339343. PubMed ID: 35057934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecularly Imprinted Sol-Gel for TNT Detection with Optical Micro-Ring Resonator Sensor Chips.
    Eisner L; Wilhelm I; Flachenecker G; Hürttlen J; Schade W
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31510108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmental behavior of explosives in groundwater from the Milan Army Ammunition Plant in aquatic and wetland plant treatments. Removal, mass balances and fate in groundwater of TNT and RDX.
    Best EP; Sprecher SL; Larson SL; Fredrickson HL; Bader DF
    Chemosphere; 1999 Jun; 38(14):3383-96. PubMed ID: 10390848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bionic Electronic Nose Based on MOS Sensors Array and Machine Learning Algorithms Used for Wine Properties Detection.
    Liu H; Li Q; Yan B; Zhang L; Gu Y
    Sensors (Basel); 2018 Dec; 19(1):. PubMed ID: 30583545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical Determination of TNT, DNT, RDX, and HMX with Gold Nanoparticles/Poly(Carbazole-Aniline) Film-Modified Glassy Carbon Sensor Electrodes Imprinted for Molecular Recognition of Nitroaromatics and Nitramines.
    Sağlam Ş; Üzer A; Erçağ E; Apak R
    Anal Chem; 2018 Jun; 90(12):7364-7370. PubMed ID: 29786423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct detection of explosives on solid surfaces by mass spectrometry with an ambient ion source based on dielectric barrier discharge.
    Na N; Zhang C; Zhao M; Zhang S; Yang C; Fang X; Zhang X
    J Mass Spectrom; 2007 Aug; 42(8):1079-85. PubMed ID: 17618527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CH3-π interaction of explosives with cavity of a TPE macrocycle: the key cause for highly selective detection of TNT.
    Feng HT; Wang JH; Zheng YS
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):20067-74. PubMed ID: 25319016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of nitroaromatic and nitramine type energetic materials in synthetic and real mixtures by cyclic voltammetry.
    Üzer A; Sağlam S; Tekdemir Y; Ustamehmetoğlu B; Sezer E; Erçağ E; Apak R
    Talanta; 2013 Oct; 115():768-78. PubMed ID: 24054661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First production-level bioremediation of explosives-contaminated soil in the United States.
    Emery DD; Faessler PC
    Ann N Y Acad Sci; 1997 Nov; 829():326-40. PubMed ID: 9472327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oligomer-coated carbon nanotube chemiresistive sensors for selective detection of nitroaromatic explosives.
    Zhang Y; Xu M; Bunes BR; Wu N; Gross DE; Moore JS; Zang L
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7471-5. PubMed ID: 25823968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine Learning-Based Rapid Detection of Volatile Organic Compounds in a Graphene Electronic Nose.
    Capman NSS; Zhen XV; Nelson JT; Chaganti VRSK; Finc RC; Lyden MJ; Williams TL; Freking M; Sherwood GJ; Bühlmann P; Hogan CJ; Koester SJ
    ACS Nano; 2022 Nov; 16(11):19567-19583. PubMed ID: 36367841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of explosives and related compounds by low-temperature plasma ambient ionization mass spectrometry.
    Garcia-Reyes JF; Harper JD; Salazar GA; Charipar NA; Ouyang Z; Cooks RG
    Anal Chem; 2011 Feb; 83(3):1084-92. PubMed ID: 21174437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating the fate of nitroaromatic (TNT) and nitramine (RDX and HMX) explosives in fractured and pristine soils.
    Douglas TA; Walsh ME; McGrath CJ; Weiss CA
    J Environ Qual; 2009; 38(6):2285-94. PubMed ID: 19875785
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.