These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 31783869)

  • 41. A modular pathway engineering strategy for the high-level production of β-ionone in Yarrowia lipolytica.
    Lu Y; Yang Q; Lin Z; Yang X
    Microb Cell Fact; 2020 Feb; 19(1):49. PubMed ID: 32103761
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Developing a piggyBac Transposon System and Compatible Selection Markers for Insertional Mutagenesis and Genome Engineering in Yarrowia lipolytica.
    Wagner JM; Williams EV; Alper HS
    Biotechnol J; 2018 May; 13(5):e1800022. PubMed ID: 29493878
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Systematic metabolic engineering of Yarrowia lipolytica for the enhanced production of erythritol.
    Yang S; Pan X; You J; Guo B; Liu Z; Cao Y; Li G; Shao M; Zhang X; Rao Z
    Bioresour Technol; 2024 Jan; 391(Pt A):129918. PubMed ID: 37884093
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Standardized Markerless Gene Integration for Pathway Engineering in Yarrowia lipolytica.
    Schwartz C; Shabbir-Hussain M; Frogue K; Blenner M; Wheeldon I
    ACS Synth Biol; 2017 Mar; 6(3):402-409. PubMed ID: 27989123
    [TBL] [Abstract][Full Text] [Related]  

  • 45. CRISPRi repression of nonhomologous end-joining for enhanced genome engineering via homologous recombination in Yarrowia lipolytica.
    Schwartz C; Frogue K; Ramesh A; Misa J; Wheeldon I
    Biotechnol Bioeng; 2017 Dec; 114(12):2896-2906. PubMed ID: 28832943
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Homology-independent genome integration enables rapid library construction for enzyme expression and pathway optimization in Yarrowia lipolytica.
    Cui Z; Jiang X; Zheng H; Qi Q; Hou J
    Biotechnol Bioeng; 2019 Feb; 116(2):354-363. PubMed ID: 30418662
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Multiplexed CRISPR Activation of Cryptic Sugar Metabolism Enables Yarrowia Lipolytica Growth on Cellobiose.
    Schwartz C; Curtis N; Löbs AK; Wheeldon I
    Biotechnol J; 2018 Sep; 13(9):e1700584. PubMed ID: 29729131
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A set of Yarrowia lipolytica CRISPR/Cas9 vectors for exploiting wild-type strain diversity.
    Larroude M; Trabelsi H; Nicaud JM; Rossignol T
    Biotechnol Lett; 2020 May; 42(5):773-785. PubMed ID: 31974649
    [TBL] [Abstract][Full Text] [Related]  

  • 49. EasyCloneYALI: Toolbox for CRISPR-Mediated Integrations and Deletions in Yarrowia lipolytica.
    Dahlin J; Holkenbrink C; Borodina I
    Methods Mol Biol; 2021; 2307():41-68. PubMed ID: 33847981
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Advances in efficient biosynthesis of erythritol by metabolic engineering of
    Huang L; Xiao B; Wang W; Li W; Zhang W; Zhou J; Cai X; Zhang B; Liu Z; Zheng Y
    Sheng Wu Gong Cheng Xue Bao; 2024 Mar; 40(3):665-686. PubMed ID: 38545970
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Multiple Parameters Drive the Efficiency of CRISPR/Cas9-Induced Gene Modifications in Yarrowia lipolytica.
    Borsenberger V; Onésime D; Lestrade D; Rigouin C; Neuvéglise C; Daboussi F; Bordes F
    J Mol Biol; 2018 Oct; 430(21):4293-4306. PubMed ID: 30227135
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Engineering Yarrowia lipolytica to produce fuels and chemicals from xylose: A review.
    Sun T; Yu Y; Wang K; Ledesma-Amaro R; Ji XJ
    Bioresour Technol; 2021 Oct; 337():125484. PubMed ID: 34320765
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Guide RNA Engineering Enables Dual Purpose CRISPR-Cpf1 for Simultaneous Gene Editing and Gene Regulation in
    Ramesh A; Ong T; Garcia JA; Adams J; Wheeldon I
    ACS Synth Biol; 2020 Apr; 9(4):967-971. PubMed ID: 32208677
    [No Abstract]   [Full Text] [Related]  

  • 54. Synthetic biology and molecular genetics in non-conventional yeasts: Current tools and future advances.
    Wagner JM; Alper HS
    Fungal Genet Biol; 2016 Apr; 89():126-136. PubMed ID: 26701310
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Identification of genome integration sites for developing a CRISPR-based gene expression toolkit in Yarrowia lipolytica.
    Liu X; Cui Z; Su T; Lu X; Hou J; Qi Q
    Microb Biotechnol; 2022 Aug; 15(8):2223-2234. PubMed ID: 35436041
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Gene Excision by Dual-Guide CRISPR-Cas9.
    Spagnuolo M; Blenner M
    Methods Mol Biol; 2021; 2307():85-94. PubMed ID: 33847983
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Using oils and fats to replace sugars as feedstocks for biomanufacturing: Challenges and opportunities for the yeast Yarrowia lipolytica.
    Soong YV; Coleman SM; Liu N; Qin J; Lawton C; Alper HS; Xie D
    Biotechnol Adv; 2023; 65():108128. PubMed ID: 36921878
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Identification of a Yarrowia lipolytica acetamidase and its use as a yeast genetic marker.
    Hamilton M; Consiglio AL; MacEwen K; Shaw AJ; Tsakraklides V
    Microb Cell Fact; 2020 Feb; 19(1):22. PubMed ID: 32024536
    [TBL] [Abstract][Full Text] [Related]  

  • 59.
    Gao Q; Yang JL; Zhao XR; Liu SC; Liu ZJ; Wei LJ; Hua Q
    J Agric Food Chem; 2020 Sep; 68(39):10730-10740. PubMed ID: 32896122
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Metabolic Engineering for Expanding the Substrate Range of Yarrowia lipolytica.
    Ledesma-Amaro R; Nicaud JM
    Trends Biotechnol; 2016 Oct; 34(10):798-809. PubMed ID: 27207225
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.