These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 31784121)

  • 21. A novel method for measuring the bending rigidity of model lipid membranes by simulating tethers.
    Harmandaris VA; Deserno M
    J Chem Phys; 2006 Nov; 125(20):204905. PubMed ID: 17144738
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stress Propagation through Biological Lipid Bilayers in Silico.
    Aponte-Santamaría C; Brunken J; Gräter F
    J Am Chem Soc; 2017 Oct; 139(39):13588-13591. PubMed ID: 28853287
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Shock wave interaction with a phospholipid membrane: coarse-grained computer simulations.
    Santo KP; Berkowitz ML
    J Chem Phys; 2014 Feb; 140(5):054906. PubMed ID: 24511978
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanomechanical properties of lipid bilayer: asymmetric modulation of lateral pressure and surface tension due to protein insertion in one leaflet of a bilayer.
    Maftouni N; Amininasab M; Ejtehadi MR; Kowsari F; Dastvan R
    J Chem Phys; 2013 Feb; 138(6):065101. PubMed ID: 23425492
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MD simulation study of direct permeation of a nanoparticle across the cell membrane under an external electric field.
    Shimizu K; Nakamura H; Watano S
    Nanoscale; 2016 Jun; 8(23):11897-906. PubMed ID: 27241464
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Understanding receptor-mediated endocytosis of elastic nanoparticles through coarse grained molecular dynamic simulation.
    Shen Z; Ye H; Li Y
    Phys Chem Chem Phys; 2018 Jun; 20(24):16372-16385. PubMed ID: 29445792
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanoparticle-lipid bilayer interactions studied with lipid bilayer arrays.
    Lu B; Smith T; Schmidt JJ
    Nanoscale; 2015 May; 7(17):7858-66. PubMed ID: 25853986
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Membrane partitioning of anionic, ligand-coated nanoparticles is accompanied by ligand snorkeling, local disordering, and cholesterol depletion.
    Gkeka P; Angelikopoulos P; Sarkisov L; Cournia Z
    PLoS Comput Biol; 2014 Dec; 10(12):e1003917. PubMed ID: 25474252
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multiscale coupling of mesoscopic- and atomistic-level lipid bilayer simulations.
    Chang R; Ayton GS; Voth GA
    J Chem Phys; 2005 Jun; 122(24):244716. PubMed ID: 16035802
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inverted micelle formation of cell-penetrating peptide studied by coarse-grained simulation: importance of attractive force between cell-penetrating peptides and lipid head group.
    Kawamoto S; Takasu M; Miyakawa T; Morikawa R; Oda T; Futaki S; Nagao H
    J Chem Phys; 2011 Mar; 134(9):095103. PubMed ID: 21385001
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Extracting lipid vesicles from plasma membranes via self-assembly of clathrin-inspired scaffolding nanoparticles.
    Li Y; Zhang X; Lin J; Li R; Yue T
    Colloids Surf B Biointerfaces; 2019 Apr; 176():239-248. PubMed ID: 30623811
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanoparticle Ligand Exchange and Its Effects at the Nanoparticle-Cell Membrane Interface.
    Wang X; Wang X; Bai X; Yan L; Liu T; Wang M; Song Y; Hu G; Gu Z; Miao Q; Chen C
    Nano Lett; 2019 Jan; 19(1):8-18. PubMed ID: 30335394
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computer simulation of the inclusion of hydrophobic nanoparticles into a lipid bilayer.
    Li Y; Gu N
    J Nanosci Nanotechnol; 2010 Nov; 10(11):7616-9. PubMed ID: 21137995
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unique dynamical approach of fully wrapping dendrimer-like soft nanoparticles by lipid bilayer membrane.
    Guo R; Mao J; Yan LT
    ACS Nano; 2013 Dec; 7(12):10646-53. PubMed ID: 24255955
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simulations of the dynamics of thermal undulations in lipid bilayers in the tensionless state and under stress.
    Shkulipa SA; den Otter WK; Briels WJ
    J Chem Phys; 2006 Dec; 125(23):234905. PubMed ID: 17190575
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Membrane-mediated interactions between nanoparticles on a substrate.
    Liang Q; Chen QH; Ma YQ
    J Phys Chem B; 2010 Apr; 114(16):5359-64. PubMed ID: 20369863
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coarse-grained molecular dynamics simulation for uptake of nanoparticles into a charged lipid vesicle dominated by electrostatic interactions.
    Shimokawa N; Ito H; Higuchi Y
    Phys Rev E; 2019 Jul; 100(1-1):012407. PubMed ID: 31499808
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermodynamics of charged nanoparticle adsorption on charge-neutral membranes: a simulation study.
    Li Y; Gu N
    J Phys Chem B; 2010 Mar; 114(8):2749-54. PubMed ID: 20146444
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Controlling the Nanoscale Rotational Behaviors of Nanoparticles on the Cell Membranes: A Computational Model.
    Ji QJ; Yuan B; Lu XM; Yang K; Ma YQ
    Small; 2016 Mar; 12(9):1140-6. PubMed ID: 26436946
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Small membranes under negative surface tension.
    Avital YY; Farago O
    J Chem Phys; 2015 Mar; 142(12):124902. PubMed ID: 25833604
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.