These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 31784525)

  • 1. A global wildfire dataset for the analysis of fire regimes and fire behaviour.
    Artés T; Oom D; de Rigo D; Durrant TH; Maianti P; Libertà G; San-Miguel-Ayanz J
    Sci Data; 2019 Nov; 6(1):296. PubMed ID: 31784525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Building a small fire database for Sub-Saharan Africa from Sentinel-2 high-resolution images.
    Chuvieco E; Roteta E; Sali M; Stroppiana D; Boettcher M; Kirches G; Storm T; Khairoun A; Pettinari ML; Franquesa M; Albergel C
    Sci Total Environ; 2022 Nov; 845():157139. PubMed ID: 35817109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MODIS Sensor Capability to Burned Area Mapping-Assessment of Performance and Improvements Provided by the Latest Standard Products in Boreal Regions.
    Moreno-Ruiz JA; García-Lázaro JR; Arbelo M; Cantón-Garbín M
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32971791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FRY, a global database of fire patch functional traits derived from space-borne burned area products.
    Laurent P; Mouillot F; Yue C; Ciais P; Moreno MV; Nogueira JMP
    Sci Data; 2018 Jul; 5():180132. PubMed ID: 29989589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A focus group study of factors that promote and constrain the use of satellite-derived fire products by resource managers in southern Africa.
    Trigg SN; Roy DP
    J Environ Manage; 2007 Jan; 82(1):95-110. PubMed ID: 16677754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing and reinitializing wildland fire simulations through satellite active fire data.
    Cardil A; Monedero S; Ramírez J; Silva CA
    J Environ Manage; 2019 Feb; 231():996-1003. PubMed ID: 30602261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Defining pyromes and global syndromes of fire regimes.
    Archibald S; Lehmann CE; Gómez-Dans JL; Bradstock RA
    Proc Natl Acad Sci U S A; 2013 Apr; 110(16):6442-7. PubMed ID: 23559374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Spatio-temporal characteristics of forest fires in China between 2001 and 2017].
    Qiao ZY; Fang L; Zhang YN; Yang J; Jiang T; Yuan H
    Ying Yong Sheng Tai Xue Bao; 2020 Jan; 31(1):55-64. PubMed ID: 31957380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A 1980-2018 global fire danger re-analysis dataset for the Canadian Fire Weather Indices.
    Vitolo C; Di Giuseppe F; Krzeminski B; San-Miguel-Ayanz J
    Sci Data; 2019 Feb; 6():190032. PubMed ID: 30806639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Estimating Biomass Burned Areas from Multispectral Dataset Detected by Multiple-Satellite].
    Yu C; Chen LF; Li SS; Tao JH; Su L
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Mar; 35(3):739-45. PubMed ID: 26117890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human-environmental drivers and impacts of the globally extreme 2017 Chilean fires.
    Bowman DMJS; Moreira-Muñoz A; Kolden CA; Chávez RO; Muñoz AA; Salinas F; González-Reyes Á; Rocco R; de la Barrera F; Williamson GJ; Borchers N; Cifuentes LA; Abatzoglou JT; Johnston FH
    Ambio; 2019 Apr; 48(4):350-362. PubMed ID: 30128860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intercomparison of MODIS AQUA and VIIRS I-Band Fires and Emissions in an Agricultural Landscape-Implications for Air Pollution Research.
    Vadrevu K; Lasko K
    Remote Sens (Basel); 2018 Jul; 10(7):978. PubMed ID: 30151254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ERA5-based global meteorological wildfire danger maps.
    Vitolo C; Di Giuseppe F; Barnard C; Coughlan R; San-Miguel-Ayanz J; Libertá G; Krzeminski B
    Sci Data; 2020 Jul; 7(1):216. PubMed ID: 32636392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size-dependent validation of MODIS MCD64A1 burned area over six vegetation types in boreal Eurasia: Large underestimation in croplands.
    Zhu C; Kobayashi H; Kanaya Y; Saito M
    Sci Rep; 2017 Jul; 7(1):4181. PubMed ID: 28680076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Introduced annual grass increases regional fire activity across the arid western USA (1980-2009).
    Balch JK; Bradley BA; D'Antonio CM; Gómez-Dans J
    Glob Chang Biol; 2013 Jan; 19(1):173-83. PubMed ID: 23504729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Land cover change interacts with drought severity to change fire regimes in Western Amazonia.
    Gutiérrez-Vélez VH; Uriarte M; DeFries R; Pinedo-Vásquez M; Fernandes K; Ceccato P; Baethgen W; Padoch C
    Ecol Appl; 2014; 24(6):1323-40. PubMed ID: 29160657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unifying wildfire models from ecology and statistical physics.
    Zinck RD; Grimm V
    Am Nat; 2009 Nov; 174(5):E170-85. PubMed ID: 19799499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Human and Physical Determinants of Wildfires and Burnt Areas in Israel.
    Levin N; Tessler N; Smith A; McAlpine C
    Environ Manage; 2016 Sep; 58(3):549-62. PubMed ID: 27246121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial distribution of temporal dynamics in anthropogenic fires in miombo savanna woodlands of Tanzania.
    Tarimo B; Dick ØB; Gobakken T; Totland Ø
    Carbon Balance Manag; 2015 Dec; 10():18. PubMed ID: 26246851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding shifts in wildfire regimes as emergent threshold phenomena.
    Zinck RD; Pascual M; Grimm V
    Am Nat; 2011 Dec; 178(6):E149-61. PubMed ID: 22089877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.