BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 31784535)

  • 1. Hydrogen bond guidance and aromatic stacking drive liquid-liquid phase separation of intrinsically disordered histidine-rich peptides.
    Gabryelczyk B; Cai H; Shi X; Sun Y; Swinkels PJM; Salentinig S; Pervushin K; Miserez A
    Nat Commun; 2019 Nov; 10(1):5465. PubMed ID: 31784535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Liquid-Liquid Phase Separation of Short Histidine- and Tyrosine-Rich Peptides: Sequence Specificity and Molecular Topology.
    Lim J; Kumar A; Low K; Verma CS; Mu Y; Miserez A; Pervushin K
    J Phys Chem B; 2021 Jul; 125(25):6776-6790. PubMed ID: 34106723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TAR DNA-binding protein 43 (TDP-43) liquid-liquid phase separation is mediated by just a few aromatic residues.
    Li HR; Chiang WC; Chou PC; Wang WJ; Huang JR
    J Biol Chem; 2018 Apr; 293(16):6090-6098. PubMed ID: 29511089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The (un)structural biology of biomolecular liquid-liquid phase separation using NMR spectroscopy.
    Murthy AC; Fawzi NL
    J Biol Chem; 2020 Feb; 295(8):2375-2384. PubMed ID: 31911439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Why Do Disordered and Structured Proteins Behave Differently in Phase Separation?
    Zhou HX; Nguemaha V; Mazarakos K; Qin S
    Trends Biochem Sci; 2018 Jul; 43(7):499-516. PubMed ID: 29716768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-coacervation of modular squid beak proteins - a comparative study.
    Cai H; Gabryelczyk B; Manimekalai MSS; Grüber G; Salentinig S; Miserez A
    Soft Matter; 2017 Nov; 13(42):7740-7752. PubMed ID: 29043368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate model of liquid-liquid phase behavior of intrinsically disordered proteins from optimization of single-chain properties.
    Tesei G; Schulze TK; Crehuet R; Lindorff-Larsen K
    Proc Natl Acad Sci U S A; 2021 Nov; 118(44):. PubMed ID: 34716273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative roles of charge,
    Das S; Lin YH; Vernon RM; Forman-Kay JD; Chan HS
    Proc Natl Acad Sci U S A; 2020 Nov; 117(46):28795-28805. PubMed ID: 33139563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomolecular condensates formed by designer minimalistic peptides.
    Baruch Leshem A; Sloan-Dennison S; Massarano T; Ben-David S; Graham D; Faulds K; Gottlieb HE; Chill JH; Lampel A
    Nat Commun; 2023 Jan; 14(1):421. PubMed ID: 36702825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamical Oligomerisation of Histidine Rich Intrinsically Disordered ProteinS Is Regulated through Zinc-Histidine Interactions.
    Cragnell C; Staby L; Lenton S; Kragelund BB; Skepö M
    Biomolecules; 2019 Apr; 9(5):. PubMed ID: 31052346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intrinsically disordered sequences enable modulation of protein phase separation through distributed tyrosine motifs.
    Lin Y; Currie SL; Rosen MK
    J Biol Chem; 2017 Nov; 292(46):19110-19120. PubMed ID: 28924037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-Silico Analysis of pH-Dependent Liquid-Liquid Phase Separation in Intrinsically Disordered Proteins.
    Pintado-Grima C; Bárcenas O; Ventura S
    Biomolecules; 2022 Jul; 12(7):. PubMed ID: 35883530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular interactions underlying liquid-liquid phase separation of the FUS low-complexity domain.
    Murthy AC; Dignon GL; Kan Y; Zerze GH; Parekh SH; Mittal J; Fawzi NL
    Nat Struct Mol Biol; 2019 Jul; 26(7):637-648. PubMed ID: 31270472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Programming protein phase-separation employing a modular library of intrinsically disordered precision block copolymer-like proteins creating dynamic cytoplasmatic compartmentalization.
    Huber MC; Schreiber A; Stühn LG; Schiller SM
    Biomaterials; 2023 Aug; 299():122165. PubMed ID: 37290157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Latest Findings on Phase Separation of Cytomechanical Proteins].
    Luo G; Zhou C
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2024 Jan; 55(1):19-23. PubMed ID: 38322526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ubiquitin Modulates Liquid-Liquid Phase Separation of UBQLN2 via Disruption of Multivalent Interactions.
    Dao TP; Kolaitis RM; Kim HJ; O'Donovan K; Martyniak B; Colicino E; Hehnly H; Taylor JP; Castañeda CA
    Mol Cell; 2018 Mar; 69(6):965-978.e6. PubMed ID: 29526694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrophobicity of arginine leads to reentrant liquid-liquid phase separation behaviors of arginine-rich proteins.
    Hong Y; Najafi S; Casey T; Shea JE; Han SI; Hwang DS
    Nat Commun; 2022 Nov; 13(1):7326. PubMed ID: 36443315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying sequence perturbations to an intrinsically disordered protein that determine its phase-separation behavior.
    Schuster BS; Dignon GL; Tang WS; Kelley FM; Ranganath AK; Jahnke CN; Simpkins AG; Regy RM; Hammer DA; Good MC; Mittal J
    Proc Natl Acad Sci U S A; 2020 May; 117(21):11421-11431. PubMed ID: 32393642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unravelling the microscopic characteristics of intrinsically disordered proteins upon liquid-liquid phase separation.
    Wu S; Wen J; Perrett S
    Essays Biochem; 2022 Dec; 66(7):891-900. PubMed ID: 36524527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Liquid-Liquid Phase Separation by Intrinsically Disordered Protein Regions of Viruses: Roles in Viral Life Cycle and Control of Virus-Host Interactions.
    Brocca S; Grandori R; Longhi S; Uversky V
    Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33260713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.