These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Bond length pattern associated with charge carriers in armchair graphene nanoribbons. Teixeira JF; de Oliveira Neto PH; da Cunha WF; Ribeiro LA; E Silva GM J Mol Model; 2017 Sep; 23(10):293. PubMed ID: 28951991 [TBL] [Abstract][Full Text] [Related]
4. Quantum Confinement in Epitaxial Armchair Graphene Nanoribbons on SiC Sidewalls. Nhung Nguyen TT; Power SR; Karakachian H; Starke U; Tegenkamp C ACS Nano; 2023 Oct; 17(20):20345-20352. PubMed ID: 37788294 [TBL] [Abstract][Full Text] [Related]
5. Smooth gap tuning strategy for cove-type graphene nanoribbons. de Sousa Araújo Cassiano T; Monteiro FF; Evaristo de Sousa L; Magela E Silva G; de Oliveira Neto PH RSC Adv; 2020 Jul; 10(45):26937-26943. PubMed ID: 35515758 [TBL] [Abstract][Full Text] [Related]
6. Charge localization and hopping in a topologically engineered graphene nanoribbon. Pereira Júnior ML; de Oliveira Neto PH; da Silva Filho DA; de Sousa LE; E Silva GM; Ribeiro Júnior LA Sci Rep; 2021 Mar; 11(1):5142. PubMed ID: 33664310 [TBL] [Abstract][Full Text] [Related]
7. Width effects on bilayer graphene nanoribbon polarons. Logrado AL; Cassiano TSA; da Cunha WF; Gargano R; E Silva GM; de Oliveira Neto PH Phys Chem Chem Phys; 2024 May; 26(20):14948-14959. PubMed ID: 38739011 [TBL] [Abstract][Full Text] [Related]
8. Analytical performance of 3 m and 3 m +1 armchair graphene nanoribbons under uniaxial strain. Kang ES; Ismail R Nanoscale Res Lett; 2014; 9(1):598. PubMed ID: 25404871 [TBL] [Abstract][Full Text] [Related]
9. In-Situ Stretching Patterned Graphene Nanoribbons in the Transmission Electron Microscope. Liao Z; Medrano Sandonas L; Zhang T; Gall M; Dianat A; Gutierrez R; Mühle U; Gluch J; Jordan R; Cuniberti G; Zschech E Sci Rep; 2017 Mar; 7(1):211. PubMed ID: 28303001 [TBL] [Abstract][Full Text] [Related]
10. Thermoelectric properties of armchair graphene nanoribbons with array characteristics. Kuo DMT RSC Adv; 2024 Jan; 14(5):3513-3518. PubMed ID: 38259995 [TBL] [Abstract][Full Text] [Related]
11. Understanding the Optical Properties of Doped and Undoped 9-Armchair Graphene Nanoribbons in Dispersion. Lindenthal S; Fazzi D; Zorn NF; El Yumin AA; Settele S; Weidinger B; Blasco E; Zaumseil J ACS Nano; 2023 Sep; 17(18):18240-18252. PubMed ID: 37695780 [TBL] [Abstract][Full Text] [Related]
12. On-Surface Synthesis of 8- and 10-Armchair Graphene Nanoribbons. Sun K; Ji P; Zhang J; Wang J; Li X; Xu X; Zhang H; Chi L Small; 2019 Apr; 15(15):e1804526. PubMed ID: 30891917 [TBL] [Abstract][Full Text] [Related]
13. Quantum Dots in Graphene Nanoribbons. Wang S; Kharche N; Costa Girão E; Feng X; Müllen K; Meunier V; Fasel R; Ruffieux P Nano Lett; 2017 Jul; 17(7):4277-4283. PubMed ID: 28603996 [TBL] [Abstract][Full Text] [Related]
14. Spatially resolved electronic structures of atomically precise armchair graphene nanoribbons. Huang H; Wei D; Sun J; Wong SL; Feng YP; Neto AH; Wee AT Sci Rep; 2012; 2():983. PubMed ID: 23248746 [TBL] [Abstract][Full Text] [Related]
15. Chemical Vapor Deposition Synthesis and Terahertz Photoconductivity of Low-Band-Gap N = 9 Armchair Graphene Nanoribbons. Chen Z; Wang HI; Teyssandier J; Mali KS; Dumslaff T; Ivanov I; Zhang W; Ruffieux P; Fasel R; Räder HJ; Turchinovich D; De Feyter S; Feng X; Kläui M; Narita A; Bonn M; Müllen K J Am Chem Soc; 2017 Mar; 139(10):3635-3638. PubMed ID: 28248492 [TBL] [Abstract][Full Text] [Related]
16. Competing Gap Opening Mechanisms of Monolayer Graphene and Graphene Nanoribbons on Strong Topological Insulators. Lin Z; Qin W; Zeng J; Chen W; Cui P; Cho JH; Qiao Z; Zhang Z Nano Lett; 2017 Jul; 17(7):4013-4018. PubMed ID: 28534404 [TBL] [Abstract][Full Text] [Related]
17. Transport of Polarons in Graphene Nanoribbons. Ribeiro LA; da Cunha WF; Fonseca AL; e Silva GM; Stafström S J Phys Chem Lett; 2015 Feb; 6(3):510-4. PubMed ID: 26261972 [TBL] [Abstract][Full Text] [Related]
18. Revealing the Electronic Structure of Silicon Intercalated Armchair Graphene Nanoribbons by Scanning Tunneling Spectroscopy. Deniz O; Sánchez-Sánchez C; Dumslaff T; Feng X; Narita A; Müllen K; Kharche N; Meunier V; Fasel R; Ruffieux P Nano Lett; 2017 Apr; 17(4):2197-2203. PubMed ID: 28301723 [TBL] [Abstract][Full Text] [Related]
19. Inverse relationship between carrier mobility and bandgap in graphene. Wang J; Zhao R; Yang M; Liu Z; Liu Z J Chem Phys; 2013 Feb; 138(8):084701. PubMed ID: 23464166 [TBL] [Abstract][Full Text] [Related]
20. Armchair graphene nanoribbons with giant spin thermoelectric efficiency. Shirdel-Havar M; Farghadan R Phys Chem Chem Phys; 2018 Jun; 20(24):16853-16860. PubMed ID: 29892735 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]