BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 31784917)

  • 1. Viscoelastic properties of doxorubicin-treated HT-29 cancer cells by atomic force microscopy: the fractional Zener model as an optimal viscoelastic model for cells.
    Rodríguez-Nieto M; Mendoza-Flores P; García-Ortiz D; Montes-de-Oca LM; Mendoza-Villa M; Barrón-González P; Espinosa G; Menchaca JL
    Biomech Model Mechanobiol; 2020 Jun; 19(3):801-813. PubMed ID: 31784917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methodologies and models for measuring viscoelastic properties of cancer cells: Towards a universal classification.
    Ovalle-Flores L; Rodríguez-Nieto M; Zárate-Triviño D; Rodríguez-Padilla C; Menchaca JL
    J Mech Behav Biomed Mater; 2023 Apr; 140():105734. PubMed ID: 36848744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring biological materials mechanics with atomic force microscopy - Determination of viscoelastic cell properties from stress relaxation experiments.
    Weber A; Benitez R; Toca-Herrera JL
    Microsc Res Tech; 2022 Oct; 85(10):3284-3295. PubMed ID: 35736395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic force microscopy studies on cellular elastic and viscoelastic properties.
    Li M; Liu L; Xi N; Wang Y
    Sci China Life Sci; 2018 Jan; 61(1):57-67. PubMed ID: 28667516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel approach for extracting viscoelastic parameters of living cells through combination of inverse finite element simulation and Atomic Force Microscopy.
    Wei F; Yang H; Liu L; Li G
    Comput Methods Biomech Biomed Engin; 2017 Mar; 20(4):373-384. PubMed ID: 27627026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Viscoelastic properties of suspended cells measured with shear flow deformation cytometry.
    Gerum R; Mirzahossein E; Eroles M; Elsterer J; Mainka A; Bauer A; Sonntag S; Winterl A; Bartl J; Fischer L; Abuhattum S; Goswami R; Girardo S; Guck J; Schrüfer S; Ströhlein N; Nosratlo M; Herrmann H; Schultheis D; Rico F; Müller SJ; Gekle S; Fabry B
    Elife; 2022 Sep; 11():. PubMed ID: 36053000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the viscoelastic properties of cells from different kidney cancer phenotypes measured with atomic force microscopy.
    Rebelo LM; de Sousa JS; Mendes Filho J; Radmacher M
    Nanotechnology; 2013 Feb; 24(5):055102. PubMed ID: 23324556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring nanoscale viscoelastic parameters of cells directly from AFM force-displacement curves.
    Efremov YM; Wang WH; Hardy SD; Geahlen RL; Raman A
    Sci Rep; 2017 May; 7(1):1541. PubMed ID: 28484282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy.
    Mahaffy RE; Park S; Gerde E; Käs J; Shih CK
    Biophys J; 2004 Mar; 86(3):1777-93. PubMed ID: 14990504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation into local cell mechanics by atomic force microscopy mapping and optical tweezer vertical indentation.
    Coceano G; Yousafzai MS; Ma W; Ndoye F; Venturelli L; Hussain I; Bonin S; Niemela J; Scoles G; Cojoc D; Ferrari E
    Nanotechnology; 2016 Feb; 27(6):065102. PubMed ID: 26683826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A general approach for the microrheology of cancer cells by atomic force microscopy.
    Wang B; Lançon P; Bienvenu C; Vierling P; Di Giorgio C; Bossis G
    Micron; 2013 Jan; 44():287-97. PubMed ID: 22951283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of methotrexate on the viscoelastic properties of single cells probed by atomic force microscopy.
    Li M; Liu L; Xiao X; Xi N; Wang Y
    J Biol Phys; 2016 Oct; 42(4):551-569. PubMed ID: 27438703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of viscoelastic properties of cancer and normal thyroid cells on different stiffness substrates.
    Rianna C; Radmacher M
    Eur Biophys J; 2017 May; 46(4):309-324. PubMed ID: 27645213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomic force microscopy indentation and inverse analysis for non-linear viscoelastic identification of breast cancer cells.
    Nguyen N; Shao Y; Wineman A; Fu J; Waas A
    Math Biosci; 2016 Jul; 277():77-88. PubMed ID: 27107978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measuring viscoelasticity of soft samples using atomic force microscopy.
    Tripathy S; Berger EJ
    J Biomech Eng; 2009 Sep; 131(9):094507. PubMed ID: 19725704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quasi-linear viscoelastic properties of costal cartilage using atomic force microscopy.
    Tripathy S; Berger EJ
    Comput Methods Biomech Biomed Engin; 2012; 15(5):475-86. PubMed ID: 22432922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping cellular nanoscale viscoelasticity and relaxation times relevant to growth of living Arabidopsis thaliana plants using multifrequency AFM.
    Seifert J; Kirchhelle C; Moore I; Contera S
    Acta Biomater; 2021 Feb; 121():371-382. PubMed ID: 33309827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local rheology of human neutrophils investigated using atomic force microscopy.
    Lee YJ; Patel D; Park S
    Int J Biol Sci; 2011 Jan; 7(1):102-11. PubMed ID: 21278920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Local viscoelastic properties of live cells investigated using dynamic and quasi-static atomic force microscopy methods.
    Cartagena A; Raman A
    Biophys J; 2014 Mar; 106(5):1033-43. PubMed ID: 24606928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Viscoelastic Properties of Confluent MDCK II Cells Obtained from Force Cycle Experiments.
    Brückner BR; Nöding H; Janshoff A
    Biophys J; 2017 Feb; 112(4):724-735. PubMed ID: 28256232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.