These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 31784917)
1. Viscoelastic properties of doxorubicin-treated HT-29 cancer cells by atomic force microscopy: the fractional Zener model as an optimal viscoelastic model for cells. Rodríguez-Nieto M; Mendoza-Flores P; García-Ortiz D; Montes-de-Oca LM; Mendoza-Villa M; Barrón-González P; Espinosa G; Menchaca JL Biomech Model Mechanobiol; 2020 Jun; 19(3):801-813. PubMed ID: 31784917 [TBL] [Abstract][Full Text] [Related]
2. Methodologies and models for measuring viscoelastic properties of cancer cells: Towards a universal classification. Ovalle-Flores L; Rodríguez-Nieto M; Zárate-Triviño D; Rodríguez-Padilla C; Menchaca JL J Mech Behav Biomed Mater; 2023 Apr; 140():105734. PubMed ID: 36848744 [TBL] [Abstract][Full Text] [Related]
3. Measuring biological materials mechanics with atomic force microscopy - Determination of viscoelastic cell properties from stress relaxation experiments. Weber A; Benitez R; Toca-Herrera JL Microsc Res Tech; 2022 Oct; 85(10):3284-3295. PubMed ID: 35736395 [TBL] [Abstract][Full Text] [Related]
4. Atomic force microscopy studies on cellular elastic and viscoelastic properties. Li M; Liu L; Xi N; Wang Y Sci China Life Sci; 2018 Jan; 61(1):57-67. PubMed ID: 28667516 [TBL] [Abstract][Full Text] [Related]
5. A novel approach for extracting viscoelastic parameters of living cells through combination of inverse finite element simulation and Atomic Force Microscopy. Wei F; Yang H; Liu L; Li G Comput Methods Biomech Biomed Engin; 2017 Mar; 20(4):373-384. PubMed ID: 27627026 [TBL] [Abstract][Full Text] [Related]
7. Comparison of the viscoelastic properties of cells from different kidney cancer phenotypes measured with atomic force microscopy. Rebelo LM; de Sousa JS; Mendes Filho J; Radmacher M Nanotechnology; 2013 Feb; 24(5):055102. PubMed ID: 23324556 [TBL] [Abstract][Full Text] [Related]
8. Measuring nanoscale viscoelastic parameters of cells directly from AFM force-displacement curves. Efremov YM; Wang WH; Hardy SD; Geahlen RL; Raman A Sci Rep; 2017 May; 7(1):1541. PubMed ID: 28484282 [TBL] [Abstract][Full Text] [Related]
9. Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy. Mahaffy RE; Park S; Gerde E; Käs J; Shih CK Biophys J; 2004 Mar; 86(3):1777-93. PubMed ID: 14990504 [TBL] [Abstract][Full Text] [Related]
10. Investigation into local cell mechanics by atomic force microscopy mapping and optical tweezer vertical indentation. Coceano G; Yousafzai MS; Ma W; Ndoye F; Venturelli L; Hussain I; Bonin S; Niemela J; Scoles G; Cojoc D; Ferrari E Nanotechnology; 2016 Feb; 27(6):065102. PubMed ID: 26683826 [TBL] [Abstract][Full Text] [Related]
11. A general approach for the microrheology of cancer cells by atomic force microscopy. Wang B; Lançon P; Bienvenu C; Vierling P; Di Giorgio C; Bossis G Micron; 2013 Jan; 44():287-97. PubMed ID: 22951283 [TBL] [Abstract][Full Text] [Related]
12. Effects of methotrexate on the viscoelastic properties of single cells probed by atomic force microscopy. Li M; Liu L; Xiao X; Xi N; Wang Y J Biol Phys; 2016 Oct; 42(4):551-569. PubMed ID: 27438703 [TBL] [Abstract][Full Text] [Related]
13. Measuring the viscoelastic relaxation function of cells with a time-dependent interpretation of the Hertz-Sneddon indentation model. Lima IVM; Silva AVS; Sousa FD; Ferreira WP; Freire RS; de Oliveira CLN; de Sousa JS Heliyon; 2024 May; 10(10):e30623. PubMed ID: 38770291 [TBL] [Abstract][Full Text] [Related]
14. Comparison of viscoelastic properties of cancer and normal thyroid cells on different stiffness substrates. Rianna C; Radmacher M Eur Biophys J; 2017 May; 46(4):309-324. PubMed ID: 27645213 [TBL] [Abstract][Full Text] [Related]
15. Atomic force microscopy indentation and inverse analysis for non-linear viscoelastic identification of breast cancer cells. Nguyen N; Shao Y; Wineman A; Fu J; Waas A Math Biosci; 2016 Jul; 277():77-88. PubMed ID: 27107978 [TBL] [Abstract][Full Text] [Related]
16. Measuring viscoelasticity of soft samples using atomic force microscopy. Tripathy S; Berger EJ J Biomech Eng; 2009 Sep; 131(9):094507. PubMed ID: 19725704 [TBL] [Abstract][Full Text] [Related]
17. Quasi-linear viscoelastic properties of costal cartilage using atomic force microscopy. Tripathy S; Berger EJ Comput Methods Biomech Biomed Engin; 2012; 15(5):475-86. PubMed ID: 22432922 [TBL] [Abstract][Full Text] [Related]
18. Mapping cellular nanoscale viscoelasticity and relaxation times relevant to growth of living Arabidopsis thaliana plants using multifrequency AFM. Seifert J; Kirchhelle C; Moore I; Contera S Acta Biomater; 2021 Feb; 121():371-382. PubMed ID: 33309827 [TBL] [Abstract][Full Text] [Related]
19. Local rheology of human neutrophils investigated using atomic force microscopy. Lee YJ; Patel D; Park S Int J Biol Sci; 2011 Jan; 7(1):102-11. PubMed ID: 21278920 [TBL] [Abstract][Full Text] [Related]
20. Local viscoelastic properties of live cells investigated using dynamic and quasi-static atomic force microscopy methods. Cartagena A; Raman A Biophys J; 2014 Mar; 106(5):1033-43. PubMed ID: 24606928 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]