These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 31784951)

  • 1. Evaluation of an Industrial Soybean Byproduct for the Potential Development of a Probiotic Animal Feed Additive with Bacillus Species.
    Mahoney R; Weeks R; Zheng T; Huang Q; Dai W; Cao Y; Liu G; Guo Y; Chistyakov V; Chikindas ML
    Probiotics Antimicrob Proteins; 2020 Sep; 12(3):1173-1178. PubMed ID: 31784951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fermented Duckweed as a Potential Feed Additive with Poultry Beneficial Bacilli Probiotics.
    Mahoney R; Weeks R; Huang Q; Dai W; Cao Y; Liu G; Guo Y; Chistyakov VA; Ermakov AM; Rudoy D; Bren A; Popov I; Chikindas ML
    Probiotics Antimicrob Proteins; 2021 Oct; 13(5):1425-1432. PubMed ID: 33988837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacillus Probiotic Supplementations Improve Laying Performance, Egg Quality, Hatching of Laying Hens, and Sperm Quality of Roosters.
    Mazanko MS; Gorlov IF; Prazdnova EV; Makarenko MS; Usatov AV; Bren AB; Chistyakov VA; Tutelyan AV; Komarova ZB; Mosolova NI; Pilipenko DN; Krotova OE; Struk AN; Lin A; Chikindas ML
    Probiotics Antimicrob Proteins; 2018 Jun; 10(2):367-373. PubMed ID: 29238921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential Probiotics Bacillus subtilis KATMIRA1933 and Bacillus amyloliquefaciens B-1895 Co-Aggregate with Clinical Isolates of Proteus mirabilis and Prevent Biofilm Formation.
    Algburi A; Alazzawi SA; Al-Ezzy AIA; Weeks R; Chistyakov V; Chikindas ML
    Probiotics Antimicrob Proteins; 2020 Dec; 12(4):1471-1483. PubMed ID: 31989448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional feed assessment on Litopenaeus vannamei using 100% fish meal replacement by soybean meal, high levels of complex carbohydrates and Bacillus probiotic strains.
    Olmos J; Ochoa L; Paniagua-Michel J; Contreras R
    Mar Drugs; 2011; 9(6):1119-1132. PubMed ID: 21747750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SOS Response Inhibitory Properties by Potential Probiotic Formulations of Bacillus amyloliquefaciens B-1895 and Bacillus subtilis KATMIRA1933 Obtained by Solid-State Fermentation.
    Prazdnova EV; Mazanko MS; Bren AB; Chistyakov VA; Weeks R; Chikindas ML
    Curr Microbiol; 2019 Mar; 76(3):312-319. PubMed ID: 30603963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of Bacillus amyloliquefaciens HZ-12 for High-Level Production of the Blood Glucose Lowering Compound, 1-Deoxynojirimycin (DNJ), and Nutraceutical Enriched Soybeans via Fermentation.
    Cai D; Liu M; Wei X; Li X; Wang Q; Nomura CT; Chen S
    Appl Biochem Biotechnol; 2017 Mar; 181(3):1108-1122. PubMed ID: 27826807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro evaluation of celluloytic Bacillus amyloliquefaciens AMS1 isolated from traditional fermented soybean (Churpi) as an animal probiotic.
    Manhar AK; Saikia D; Bashir Y; Mech RK; Nath D; Konwar BK; Mandal M
    Res Vet Sci; 2015 Apr; 99():149-56. PubMed ID: 25660401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellulolytic potential of probiotic Bacillus Subtilis AMS6 isolated from traditional fermented soybean (Churpi): An in-vitro study with regards to application as an animal feed additive.
    Manhar AK; Bashir Y; Saikia D; Nath D; Gupta K; Konwar BK; Kumar R; Namsa ND; Mandal M
    Microbiol Res; 2016; 186-187():62-70. PubMed ID: 27242144
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Ruiz Sella SRB; Bueno T; de Oliveira AAB; Karp SG; Soccol CR
    Crit Rev Biotechnol; 2021 May; 41(3):355-369. PubMed ID: 33563053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Bacillus amyloliquefaciens and Bacillus subtilis on ileal digestibility of AA and total tract digestibility of CP and gross energy in diets fed to growing pigs.
    Blavi L; Jørgensen JN; Stein HH
    J Anim Sci; 2019 Feb; 97(2):727-734. PubMed ID: 30445592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beneficial Effects of Spore-Forming
    Mazanko MS; Popov IV; Prazdnova EV; Refeld AG; Bren AB; Zelenkova GA; Chistyakov VA; Algburi A; Weeks RM; Ermakov AM; Chikindas ML
    Front Vet Sci; 2022; 9():877360. PubMed ID: 35711797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of Bacillus spp. strains for use as probiotic additives in pig feed.
    Larsen N; Thorsen L; Kpikpi EN; Stuer-Lauridsen B; Cantor MD; Nielsen B; Brockmann E; Derkx PM; Jespersen L
    Appl Microbiol Biotechnol; 2014 Feb; 98(3):1105-18. PubMed ID: 24201893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probiotic Intake Increases the Expression of Vitellogenin Genes in Laying Hens.
    Mazanko MS; Makarenko MS; Chistyakov VA; Usatov AV; Prazdnova EV; Bren AB; Gorlov IF; Komarova ZB; Weeks R; Chikindas ML
    Probiotics Antimicrob Proteins; 2019 Dec; 11(4):1324-1329. PubMed ID: 30674007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasonic and enzymatic pretreatments of Monascus fermentation byproduct for a sustainable production of Bacillus subtilis.
    Zhang C; Zhang F; Wang Y; Shi X; Fan R; Ni L
    J Sci Food Agric; 2021 Jul; 101(9):3836-3842. PubMed ID: 33336368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The bio-processing of soybean dregs by solid state fermentation using a poly γ-glutamic acid producing strain and its effect as feed additive.
    Jiang K; Tang B; Wang Q; Xu Z; Sun L; Ma J; Li S; Xu H; Lei P
    Bioresour Technol; 2019 Nov; 291():121841. PubMed ID: 31349173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacillus amyloliquefaciens Spore Production Under Solid-State Fermentation of Lignocellulosic Residues.
    Berikashvili V; Sokhadze K; Kachlishvili E; Elisashvili V; Chikindas ML
    Probiotics Antimicrob Proteins; 2018 Dec; 10(4):755-761. PubMed ID: 29249066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of Bacillus amyloliquefaciens PM415 as a potential bio-preserving probiotic.
    Ye J; Wu H; Feng L; Huang Q; Li Q; Liao W; Wu JC
    Arch Microbiol; 2024 Apr; 206(5):222. PubMed ID: 38642140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of β-mannanase production by Bacillus subtilis US191 using economical agricultural substrates.
    Blibech M; Farhat-Khemakhem A; Kriaa M; Aslouj R; Boukhris I; Alghamdi OA; Chouayekh H
    Biotechnol Prog; 2020 Jul; 36(4):e2989. PubMed ID: 32134202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Screening of Bacillus strains as potential probiotics and subsequent confirmation of the in vivo effectiveness of Bacillus subtilis MA139 in pigs.
    Guo X; Li D; Lu W; Piao X; Chen X
    Antonie Van Leeuwenhoek; 2006 Aug; 90(2):139-46. PubMed ID: 16820971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.