BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 31785035)

  • 1. Bioinformatic Identification of Chinese Hamster Ovary (CHO) Cold-Shock Genes and Biological Evidence of their Cold-Inducible Promoters.
    Nguyen LN; Novak N; Baumann M; Koehn J; Borth N
    Biotechnol J; 2020 Mar; 15(3):e1900359. PubMed ID: 31785035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of a novel temperature sensitive promoter in CHO cells.
    Thaisuchat H; Baumann M; Pontiller J; Hesse F; Ernst W
    BMC Biotechnol; 2011 May; 11():51. PubMed ID: 21569433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthetic promoters for CHO cell engineering.
    Brown AJ; Sweeney B; Mainwaring DO; James DC
    Biotechnol Bioeng; 2014 Aug; 111(8):1638-47. PubMed ID: 24615264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overexpression of cold-inducible RNA-binding protein increases interferon-gamma production in Chinese-hamster ovary cells.
    Tan HK; Lee MM; Yap MG; Wang DI
    Biotechnol Appl Biochem; 2008 Apr; 49(Pt 4):247-57. PubMed ID: 17608629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel Promoters Derived from Chinese Hamster Ovary Cells via In Silico and In Vitro Analysis.
    Nguyen LN; Baumann M; Dhiman H; Marx N; Schmieder V; Hussein M; Eisenhut P; Hernandez I; Koehn J; Borth N
    Biotechnol J; 2019 Nov; 14(11):e1900125. PubMed ID: 31271264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CHO genome mining for synthetic promoter design.
    Johari YB; Brown AJ; Alves CS; Zhou Y; Wright CM; Estes SD; Kshirsagar R; James DC
    J Biotechnol; 2019 Mar; 294():1-13. PubMed ID: 30703471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineered and Natural Promoters and Chromatin-Modifying Elements for Recombinant Protein Expression in CHO Cells.
    Romanova N; Noll T
    Biotechnol J; 2018 Mar; 13(3):e1700232. PubMed ID: 29145694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expanding the Chinese hamster ovary cell long noncoding RNA transcriptome using RNASeq.
    Motheramgari K; Valdés-Bango Curell R; Tzani I; Gallagher C; Castro-Rivadeneyra M; Zhang L; Barron N; Clarke C
    Biotechnol Bioeng; 2020 Oct; 117(10):3224-3231. PubMed ID: 32558938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential promoter usage in prolactin receptor gene expression: hepatocyte nuclear factor 4 binds to and activates the promoter preferentially active in the liver.
    Møldrup A; Ormandy C; Nagano M; Murthy K; Banville D; Tronche F; Kelly PA
    Mol Endocrinol; 1996 Jun; 10(6):661-71. PubMed ID: 8776726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-level expression of proteins in mammalian cells using transcription regulatory sequences from the Chinese hamster EF-1alpha gene.
    Running Deer J; Allison DS
    Biotechnol Prog; 2004; 20(3):880-9. PubMed ID: 15176895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovery of transcription start sites in the Chinese hamster genome by next-generation RNA sequencing.
    Jakobi T; Brinkrolf K; Tauch A; Noll T; Stoye J; Pühler A; Goesmann A
    J Biotechnol; 2014 Nov; 190():64-75. PubMed ID: 25086342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced productivity of G1 phase Chinese hamster ovary cells using the GADD153 promoter.
    de Boer L; Gray PP; Sunstrom NA
    Biotechnol Lett; 2004 Jan; 26(1):61-5. PubMed ID: 15005154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing productivity of Chinese hamster ovary (CHO) cells: synergistic strategies combining low-temperature culture and mTORC1 signaling engineering.
    Shahabi F; Abdoli S; Bazi Z; Shamsabadi F; Yamchi A; Shahbazi M
    Front Bioeng Biotechnol; 2023; 11():1268048. PubMed ID: 38076428
    [No Abstract]   [Full Text] [Related]  

  • 14. A Bioinformatics Pipeline for the Identification of CHO Cell Differential Gene Expression from RNA-Seq Data.
    Monger C; Motheramgari K; McSharry J; Barron N; Clarke C
    Methods Mol Biol; 2017; 1603():169-186. PubMed ID: 28493130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detailed understanding of enhanced specific productivity in Chinese hamster ovary cells at low culture temperature.
    Kou TC; Fan L; Zhou Y; Ye ZY; Liu XP; Zhao L; Tan WS
    J Biosci Bioeng; 2011 Mar; 111(3):365-9. PubMed ID: 21169054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of low temperature on productivity, proteome and protein phosphorylation of CHO cells.
    Kaufmann H; Mazur X; Fussenegger M; Bailey JE
    Biotechnol Bioeng; 1999 Jun; 63(5):573-82. PubMed ID: 10397813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthetic cold-inducible promoter enhances recombinant protein accumulation during Agrobacterium-mediated transient expression in Nicotiana excelsior at chilling temperatures.
    Gerasymenko IM; Sheludko YV
    Biotechnol Lett; 2017 Jul; 39(7):1059-1067. PubMed ID: 28439740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcription of metallothionein isoform promoters is differentially regulated in cadmium-sensitive and -resistant CHO cells.
    Yu CW; Chen HC; Lin LY
    J Cell Biochem; 1998 Feb; 68(2):174-85. PubMed ID: 9443073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subphysiological temperature induces pervasive alternative splicing in Chinese hamster ovary cells.
    Tzani I; Monger C; Motheramgari K; Gallagher C; Hagan R; Kelly P; Costello A; Meiller J; Floris P; Zhang L; Clynes M; Bones J; Barron N; Clarke C
    Biotechnol Bioeng; 2020 Aug; 117(8):2489-2503. PubMed ID: 32346860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcription factor engineering in CHO cells for recombinant protein production.
    Gutiérrez-González M; Latorre Y; Zúñiga R; Aguillón JC; Molina MC; Altamirano C
    Crit Rev Biotechnol; 2019 Aug; 39(5):665-679. PubMed ID: 31030575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.