These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 31785780)

  • 1. Unearthing Hidden Chemical Potential from Discarded Actinobacterial Libraries.
    Timmermans ML; Ross AC
    Trends Biotechnol; 2020 Jan; 38(1):7-9. PubMed ID: 31785780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Glossary for Chemical Approaches towards Unlocking the Trove of Metabolic Treasures in
    Zhang J; Hassan HA; Abdelmohsen UR; Zahran EM
    Molecules; 2021 Dec; 27(1):. PubMed ID: 35011373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Current and future prospects for CRISPR-based tools in bacteria.
    Luo ML; Leenay RT; Beisel CL
    Biotechnol Bioeng; 2016 May; 113(5):930-43. PubMed ID: 26460902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extending CRISPR-Cas9 Technology from Genome Editing to Transcriptional Engineering in the Genus Clostridium.
    Bruder MR; Pyne ME; Moo-Young M; Chung DA; Chou CP
    Appl Environ Microbiol; 2016 Oct; 82(20):6109-6119. PubMed ID: 27496775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Harnessing CRISPR-Cas systems for bacterial genome editing.
    Selle K; Barrangou R
    Trends Microbiol; 2015 Apr; 23(4):225-32. PubMed ID: 25698413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The CRISPR-cas system promotes antimicrobial resistance in Campylobacter jejuni.
    Shabbir MA; Wu Q; Shabbir MZ; Sajid A; Ahmed S; Sattar A; Tang Y; Li J; Maan MK; Hao H; Yuan Z
    Future Microbiol; 2018 Dec; 13():1757-1774. PubMed ID: 30526040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Advances in application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 system in stem cells research].
    Sun SJ; Huo JH; Geng ZJ; Sun XY; Fu XB
    Zhonghua Shao Shang Za Zhi; 2018 Apr; 34(4):253-256. PubMed ID: 29690746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Survey of clustered regularly interspaced short palindromic repeats and their associated Cas proteins (CRISPR/Cas) systems in multiple sequenced strains of Klebsiella pneumoniae.
    Ostria-Hernández ML; Sánchez-Vallejo CJ; Ibarra JA; Castro-Escarpulli G
    BMC Res Notes; 2015 Aug; 8():332. PubMed ID: 26238567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly efficient editing of the actinorhodin polyketide chain length factor gene in Streptomyces coelicolor M145 using CRISPR/Cas9-CodA(sm) combined system.
    Zeng H; Wen S; Xu W; He Z; Zhai G; Liu Y; Deng Z; Sun Y
    Appl Microbiol Biotechnol; 2015 Dec; 99(24):10575-85. PubMed ID: 26318449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Can genetic engineering-based methods for gene function identification be eclipsed by genome editing in plants? A comparison of methodologies.
    Amritha PP; Shah JM
    Mol Genet Genomics; 2021 May; 296(3):485-500. PubMed ID: 33751237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic engineering of a temperate phage-based delivery system for CRISPR/Cas9 antimicrobials against Staphylococcus aureus.
    Park JY; Moon BY; Park JW; Thornton JA; Park YH; Seo KS
    Sci Rep; 2017 Mar; 7():44929. PubMed ID: 28322317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR technologies for bacterial systems: Current achievements and future directions.
    Choi KR; Lee SY
    Biotechnol Adv; 2016 Nov; 34(7):1180-1209. PubMed ID: 27566508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potent Cas9 Inhibition in Bacterial and Human Cells by AcrIIC4 and AcrIIC5 Anti-CRISPR Proteins.
    Lee J; Mir A; Edraki A; Garcia B; Amrani N; Lou HE; Gainetdinov I; Pawluk A; Ibraheim R; Gao XD; Liu P; Davidson AR; Maxwell KL; Sontheimer EJ
    mBio; 2018 Dec; 9(6):. PubMed ID: 30514786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hidden antibiotics in actinomycetes can be identified by inactivation of gene clusters for common antibiotics.
    Culp EJ; Yim G; Waglechner N; Wang W; Pawlowski AC; Wright GD
    Nat Biotechnol; 2019 Oct; 37(10):1149-1154. PubMed ID: 31501558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR/Cas9-Mediated Re-Sensitization of Antibiotic-Resistant Escherichia coli Harboring Extended-Spectrum β-Lactamases.
    Kim JS; Cho DH; Park M; Chung WJ; Shin D; Ko KS; Kweon DH
    J Microbiol Biotechnol; 2016 Feb; 26(2):394-401. PubMed ID: 26502735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR/Cas9 Immune System as a Tool for Genome Engineering.
    Hryhorowicz M; Lipiński D; Zeyland J; Słomski R
    Arch Immunol Ther Exp (Warsz); 2017 Jun; 65(3):233-240. PubMed ID: 27699445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacterial CRISPR: accomplishments and prospects.
    Peters JM; Silvis MR; Zhao D; Hawkins JS; Gross CA; Qi LS
    Curr Opin Microbiol; 2015 Oct; 27():121-6. PubMed ID: 26363124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering of Streptomyces lividans for heterologous expression of secondary metabolite gene clusters.
    Ahmed Y; Rebets Y; Estévez MR; Zapp J; Myronovskyi M; Luzhetskyy A
    Microb Cell Fact; 2020 Jan; 19(1):5. PubMed ID: 31918711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR-Cas9 Based Engineering of Actinomycetal Genomes.
    Tong Y; Charusanti P; Zhang L; Weber T; Lee SY
    ACS Synth Biol; 2015 Sep; 4(9):1020-9. PubMed ID: 25806970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selection and Validation of Spacer Sequences for CRISPR-Cas9 Genome Editing and Transcription Regulation in Bacteria.
    Grenier F; Lucier JF; Rodrigue S
    Methods Mol Biol; 2015; 1334():233-44. PubMed ID: 26404154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.