BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 31786372)

  • 1. The role of transposable elements activity in aging and their possible involvement in laminopathic diseases.
    Andrenacci D; Cavaliere V; Lattanzi G
    Ageing Res Rev; 2020 Jan; 57():100995. PubMed ID: 31786372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silencing of Euchromatic Transposable Elements as a Consequence of Nuclear Lamina Dysfunction.
    Cavaliere V; Lattanzi G; Andrenacci D
    Cells; 2020 Mar; 9(3):. PubMed ID: 32151001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting heterochromatin formation to transposable elements in Drosophila: potential roles of the piRNA system.
    Sentmanat M; Wang SH; Elgin SC
    Biochemistry (Mosc); 2013 Jun; 78(6):562-71. PubMed ID: 23980883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aging in the Drosophila ovary: contrasting changes in the expression of the piRNA machinery and mitochondria but no global release of transposable elements.
    Erwin AA; Blumenstiel JP
    BMC Genomics; 2019 Apr; 20(1):305. PubMed ID: 31014230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromatin-modifying genetic interventions suppress age-associated transposable element activation and extend life span in Drosophila.
    Wood JG; Jones BC; Jiang N; Chang C; Hosier S; Wickremesinghe P; Garcia M; Hartnett DA; Burhenn L; Neretti N; Helfand SL
    Proc Natl Acad Sci U S A; 2016 Oct; 113(40):11277-11282. PubMed ID: 27621458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transposable elements as artisans of the heterochromatic genome in Drosophila melanogaster.
    Dimitri P; Corradini N; Rossi F; Mei E; Zhimulev IF; Vernì F
    Cytogenet Genome Res; 2005; 110(1-4):165-72. PubMed ID: 16093669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Age-associated de-repression of retrotransposons in the Drosophila fat body, its potential cause and consequence.
    Chen H; Zheng X; Xiao D; Zheng Y
    Aging Cell; 2016 Jun; 15(3):542-52. PubMed ID: 27072046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Constitutive Heterochromatin in Eukaryotic Genomes: A Mine of Transposable Elements.
    Marsano RM; Dimitri P
    Cells; 2022 Feb; 11(5):. PubMed ID: 35269383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of transposable elements in heterochromatin and epigenetic control.
    Lippman Z; Gendrel AV; Black M; Vaughn MW; Dedhia N; McCombie WR; Lavine K; Mittal V; May B; Kasschau KD; Carrington JC; Doerge RW; Colot V; Martienssen R
    Nature; 2004 Jul; 430(6998):471-6. PubMed ID: 15269773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Constitutive heterochromatin and transposable elements in Drosophila melanogaster.
    Dimitri P
    Genetica; 1997; 100(1-3):85-93. PubMed ID: 9440261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transposable Elements Cross Kingdom Boundaries and Contribute to Inflammation and Ageing: Somatic Acquisition of Foreign Transposable Elements as a Catalyst of Genome Instability, Epigenetic Dysregulation, Inflammation, Senescence, and Ageing.
    Chalmers TJ; Wu LE
    Bioessays; 2020 Mar; 42(3):e1900197. PubMed ID: 31994769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The relationship of lamins with epigenetic factors during aging.
    Mustafin RN; Khusnutdinova EK
    Vavilovskii Zhurnal Genet Selektsii; 2022 Feb; 26(1):40-49. PubMed ID: 35342861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transgenerational epigenetic control of constitutive heterochromatin, transposons, and centromeres.
    Fukagawa T; Kakutani T
    Curr Opin Genet Dev; 2023 Feb; 78():102021. PubMed ID: 36716679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inviting instability: Transposable elements, double-strand breaks, and the maintenance of genome integrity.
    Hedges DJ; Deininger PL
    Mutat Res; 2007 Mar; 616(1-2):46-59. PubMed ID: 17157332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dysfunction of Lamin B and Physiological Aging Cause Telomere Instability in Drosophila Germline.
    Morgunova VV; Sokolova OA; Sizova TV; Malaev LG; Babaev DS; Kwon DA; Kalmykova AI
    Biochemistry (Mosc); 2022 Dec; 87(12):1600-1610. PubMed ID: 36717449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromatin-based silencing mechanisms.
    Bender J
    Curr Opin Plant Biol; 2004 Oct; 7(5):521-6. PubMed ID: 15337094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlation of LNCR rasiRNAs expression with heterochromatin formation during development of the holocentric insect Spodoptera frugiperda.
    Stanojcic S; Gimenez S; Permal E; Cousserans F; Quesneville H; Fournier P; d'Alençon E
    PLoS One; 2011; 6(9):e24746. PubMed ID: 21980354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The nuclear envelope, human genetic diseases and ageing.
    Maraldi NM; Mazzotti G; Rana R; Antonucci A; Di Primio R; Guidotti L
    Eur J Histochem; 2007; 51 Suppl 1():117-24. PubMed ID: 17703602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The distribution of transposable elements within and between chromosomes in a population of Drosophila melanogaster. III. Element abundances in heterochromatin.
    Charlesworth B; Jarne P; Assimacopoulos S
    Genet Res; 1994 Dec; 64(3):183-97. PubMed ID: 7698642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting of P-Element Reporters to Heterochromatic Domains by Transposable Element 1360 in Drosophila melanogaster.
    Huisinga KL; Riddle NC; Leung W; Shimonovich S; McDaniel S; Figueroa-Clarevega A; Elgin SC
    Genetics; 2016 Feb; 202(2):565-82. PubMed ID: 26680659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.