BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 31786508)

  • 1. Nitrate inhibits primary root growth by reducing accumulation of reactive oxygen species in the root tip in Medicago truncatula.
    Zang L; Morère-Le Paven MC; Clochard T; Porcher A; Satour P; Mojović M; Vidović M; Limami AM; Montrichard F
    Plant Physiol Biochem; 2020 Jan; 146():363-373. PubMed ID: 31786508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The nitrate transporter MtNPF6.8 (MtNRT1.3) transports abscisic acid and mediates nitrate regulation of primary root growth in Medicago truncatula.
    Pellizzaro A; Clochard T; Cukier C; Bourdin C; Juchaux M; Montrichard F; Thany S; Raymond V; Planchet E; Limami AM; Morère-Le Paven MC
    Plant Physiol; 2014 Dec; 166(4):2152-65. PubMed ID: 25367858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Nitrate Transporter MtNPF6.8 Is a Master Sensor of Nitrate Signal in the Primary Root Tip of
    Zang L; Tarkowski ŁP; Morère-Le Paven MC; Zivy M; Balliau T; Clochard T; Bahut M; Balzergue S; Pelletier S; Landès C; Limami AM; Montrichard F
    Front Plant Sci; 2022; 13():832246. PubMed ID: 35371178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The nitrate transporter-sensor MtNPF6.8 regulates the branched chain amino acid/pantothenate metabolic pathway in barrel medic (Medicago truncatula Gaertn.) root tip.
    Tarkowski ŁP; Clochard T; Blein-Nicolas M; Zivy M; Baillau T; Abadie C; Morère-Le Paven MC; Limami AM; Tcherkez G; Montrichard F
    Plant Physiol Biochem; 2024 Jan; 206():108213. PubMed ID: 38043253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Abscisic acid and lateral root organ defective/NUMEROUS INFECTIONS AND POLYPHENOLICS modulate root elongation via reactive oxygen species in Medicago truncatula.
    Zhang C; Bousquet A; Harris JM
    Plant Physiol; 2014 Oct; 166(2):644-58. PubMed ID: 25192698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Medicago truncatula ecotypes A17 and R108 differed in their response to iron deficiency.
    Li G; Wang B; Tian Q; Wang T; Zhang WH
    J Plant Physiol; 2014 May; 171(8):639-47. PubMed ID: 24709157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accumulation of reactive oxygen species in arbuscular mycorrhizal roots.
    Fester T; Hause G
    Mycorrhiza; 2005 Jul; 15(5):373-9. PubMed ID: 15875223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Medicago truncatula genotypes Jemalong A17 and R108 show contrasting variations under drought stress.
    Luo SS; Sun YN; Zhou X; Zhu T; Zhu LS; Arfan M; Zou LJ; Lin HH
    Plant Physiol Biochem; 2016 Dec; 109():190-198. PubMed ID: 27721134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of Reactive Oxygen Species in Plant Root Immunity.
    Zhang J; Liu H; Li K; Feng F
    Methods Mol Biol; 2024; 2832():213-222. PubMed ID: 38869798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of reactive oxygen species and auxin in serotonin-induced inhibition of primary root elongation.
    Wan J; Zhang P; Sun L; Li S; Wang R; Zhou H; Wang W; Xu J
    J Plant Physiol; 2018 Oct; 229():89-99. PubMed ID: 30055520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulatory Role of Reactive Oxygen Species in Root Development in Model Plant of
    Zhou X; Xiang Y; Li C; Yu G
    Front Plant Sci; 2020; 11():485932. PubMed ID: 33042167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactive Oxygen Species Generated by NADPH Oxidases Promote Radicle Protrusion and Root Elongation during Rice Seed Germination.
    Li WY; Chen BX; Chen ZJ; Gao YT; Chen Z; Liu J
    Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28098759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abscisic acid rescues the root meristem defects of the Medicago truncatula latd mutant.
    Liang Y; Mitchell DM; Harris JM
    Dev Biol; 2007 Apr; 304(1):297-307. PubMed ID: 17239844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of reactive oxygen species-generating enzymes and hydrogen peroxide during cadmium, mercury and osmotic stresses in barley root tip.
    Tamás L; Mistrík I; Huttová J; Halusková L; Valentovicová K; Zelinová V
    Planta; 2010 Jan; 231(2):221-31. PubMed ID: 19898864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactive oxygen species and nitric oxide are involved in polyamine-induced growth inhibition in wheat plants.
    Recalde L; Vázquez A; Groppa MD; Benavides MP
    Protoplasma; 2018 Sep; 255(5):1295-1307. PubMed ID: 29511833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NADPH oxidases in the arbuscular mycorrhizal symbiosis.
    Belmondo S; Calcagno C; Genre A; Puppo A; Pauly N; Lanfranco L
    Plant Signal Behav; 2016; 11(4):e1165379. PubMed ID: 27018627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superoxide and its metabolism during germination and axis growth of Vigna radiata (L.) Wilczek seeds.
    Singh KL; Chaudhuri A; Kar RK
    Plant Signal Behav; 2014; 9(8):e29278. PubMed ID: 25763616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cadmium-induced changes in antioxidative systems and differentiation in roots of contrasted Medicago truncatula lines.
    Rahoui S; Martinez Y; Sakouhi L; Ben C; Rickauer M; El Ferjani E; Gentzbittel L; Chaoui A
    Protoplasma; 2017 Jan; 254(1):473-489. PubMed ID: 27055657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A genotypic difference in primary root length is associated with the inhibitory role of transforming growth factor-beta receptor-interacting protein-1 on root meristem size in wheat.
    He X; Fang J; Li J; Qu B; Ren Y; Ma W; Zhao X; Li B; Wang D; Li Z; Tong Y
    Plant J; 2014 Mar; 77(6):931-43. PubMed ID: 24467344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autophagy regulates glucose-mediated root meristem activity by modulating ROS production in Arabidopsis.
    Huang L; Yu LJ; Zhang X; Fan B; Wang FZ; Dai YS; Qi H; Zhou Y; Xie LJ; Xiao S
    Autophagy; 2019 Mar; 15(3):407-422. PubMed ID: 30208757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.