BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1499 related articles for article (PubMed ID: 31786788)

  • 1. Single-Cell Capture, RNA-seq, and Transcriptome Analysis from the Neural Retina.
    Dharmat R; Kim S; Li Y; Chen R
    Methods Mol Biol; 2020; 2092():159-186. PubMed ID: 31786788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-Cell Transcriptomics of Immune Cells: Cell Isolation and cDNA Library Generation for scRNA-Seq.
    Arsenio J
    Methods Mol Biol; 2020; 2184():1-18. PubMed ID: 32808214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Data Analysis in Single-Cell Transcriptome Sequencing.
    Gao S
    Methods Mol Biol; 2018; 1754():311-326. PubMed ID: 29536451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-Cell RNA Sequencing Analysis Using Fluidigm C1 Platform for Characterization of Heterogeneous Transcriptomes.
    Kim J; Marignani PA
    Methods Mol Biol; 2022; 2508():261-278. PubMed ID: 35737246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Second-Strand Synthesis-Based Massively Parallel scRNA-Seq Reveals Cellular States and Molecular Features of Human Inflammatory Skin Pathologies.
    Hughes TK; Wadsworth MH; Gierahn TM; Do T; Weiss D; Andrade PR; Ma F; de Andrade Silva BJ; Shao S; Tsoi LC; Ordovas-Montanes J; Gudjonsson JE; Modlin RL; Love JC; Shalek AK
    Immunity; 2020 Oct; 53(4):878-894.e7. PubMed ID: 33053333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advantages of Single-Nucleus over Single-Cell RNA Sequencing of Adult Kidney: Rare Cell Types and Novel Cell States Revealed in Fibrosis.
    Wu H; Kirita Y; Donnelly EL; Humphreys BD
    J Am Soc Nephrol; 2019 Jan; 30(1):23-32. PubMed ID: 30510133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emergence of Bias During the Synthesis and Amplification of cDNA for scRNA-seq.
    Luo Q; Zhang H
    Adv Exp Med Biol; 2018; 1068():149-158. PubMed ID: 29943302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the single-cell RNA-seq analysis landscape with the scRNA-tools database.
    Zappia L; Phipson B; Oshlack A
    PLoS Comput Biol; 2018 Jun; 14(6):e1006245. PubMed ID: 29939984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recovery and analysis of transcriptome subsets from pooled single-cell RNA-seq libraries.
    Riemondy KA; Ransom M; Alderman C; Gillen AE; Fu R; Finlay-Schultz J; Kirkpatrick GD; Di Paola J; Kabos P; Sartorius CA; Hesselberth JR
    Nucleic Acids Res; 2019 Feb; 47(4):e20. PubMed ID: 30496484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiplexed Analysis of Retinal Gene Expression and Chromatin Accessibility using scRNA-Seq and scATAC-Seq.
    Weir K; Leavey P; Santiago C; Blackshaw S
    J Vis Exp; 2021 Mar; (169):. PubMed ID: 33779599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plant Nuclei Isolation for Single-Nucleus RNA Sequencing.
    Xin X; Du F; Jiao Y
    Methods Mol Biol; 2023; 2686():307-311. PubMed ID: 37540366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying cell types to interpret scRNA-seq data: how, why and more possibilities.
    Wang Z; Ding H; Zou Q
    Brief Funct Genomics; 2020 Jul; 19(4):286-291. PubMed ID: 32232401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using BRIE to Detect and Analyze Splicing Isoforms in scRNA-Seq Data.
    Huang Y; Sanguinetti G
    Methods Mol Biol; 2019; 1935():175-185. PubMed ID: 30758827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An accessible, interactive GenePattern Notebook for analysis and exploration of single-cell transcriptomic data.
    Mah CK; Wenzel AT; Juarez EF; Tabor T; Reich MM; Mesirov JP
    F1000Res; 2018; 7():1306. PubMed ID: 31316748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-Cell RNA Sequencing Analysis: A Step-by-Step Overview.
    Slovin S; Carissimo A; Panariello F; Grimaldi A; Bouché V; Gambardella G; Cacchiarelli D
    Methods Mol Biol; 2021; 2284():343-365. PubMed ID: 33835452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The promise of single-cell RNA sequencing for kidney disease investigation.
    Wu H; Humphreys BD
    Kidney Int; 2017 Dec; 92(6):1334-1342. PubMed ID: 28893418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Next-generation sequencing facilitates quantitative analysis of wild-type and Nrl(-/-) retinal transcriptomes.
    Brooks MJ; Rajasimha HK; Roger JE; Swaroop A
    Mol Vis; 2011; 17():3034-54. PubMed ID: 22162623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of high variability in gene expression from single-cell RNA-seq profiling.
    Chen HI; Jin Y; Huang Y; Chen Y
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):508. PubMed ID: 27556924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systematic Comparison of High-throughput Single-Cell and Single-Nucleus Transcriptomes during Cardiomyocyte Differentiation.
    Selewa A; Dohn R; Eckart H; Lozano S; Xie B; Gauchat E; Elorbany R; Rhodes K; Burnett J; Gilad Y; Pott S; Basu A
    Sci Rep; 2020 Jan; 10(1):1535. PubMed ID: 32001747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A component overlapping attribute clustering (COAC) algorithm for single-cell RNA sequencing data analysis and potential pathobiological implications.
    Peng H; Zeng X; Zhou Y; Zhang D; Nussinov R; Cheng F
    PLoS Comput Biol; 2019 Feb; 15(2):e1006772. PubMed ID: 30779739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 75.