These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 31787073)

  • 1. HTRgene: a computational method to perform the integrated analysis of multiple heterogeneous time-series data: case analysis of cold and heat stress response signaling genes in Arabidopsis.
    Ahn H; Jung I; Chae H; Kang D; Jung W; Kim S
    BMC Bioinformatics; 2019 Dec; 20(Suppl 16):588. PubMed ID: 31787073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways.
    Swindell WR; Huebner M; Weber AP
    BMC Genomics; 2007 May; 8():125. PubMed ID: 17519032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative transcriptome meta-analysis of Arabidopsis thaliana under drought and cold stress.
    Sharma R; Singh G; Bhattacharya S; Singh A
    PLoS One; 2018; 13(9):e0203266. PubMed ID: 30192796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. StressGenePred: a twin prediction model architecture for classifying the stress types of samples and discovering stress-related genes in arabidopsis.
    Kang D; Ahn H; Lee S; Lee CJ; Hur J; Jung W; Kim S
    BMC Genomics; 2019 Dec; 20(Suppl 11):949. PubMed ID: 31856731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Heat Stress Factor HSFA6b Connects ABA Signaling and ABA-Mediated Heat Responses.
    Huang YC; Niu CY; Yang CR; Jinn TL
    Plant Physiol; 2016 Oct; 172(2):1182-1199. PubMed ID: 27493213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative analyses of stress-responsive genes in Arabidopsis thaliana: insight from genomic data mining, functional enrichment, pathway analysis and phenomics.
    Naika M; Shameer K; Sowdhamini R
    Mol Biosyst; 2013 Jul; 9(7):1888-908. PubMed ID: 23645342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Allyl-isothiocyanate treatment induces a complex transcriptional reprogramming including heat stress, oxidative stress and plant defence responses in Arabidopsis thaliana.
    Kissen R; Øverby A; Winge P; Bones AM
    BMC Genomics; 2016 Sep; 17(1):740. PubMed ID: 27639974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HsfA1d and HsfA1e involved in the transcriptional regulation of HsfA2 function as key regulators for the Hsf signaling network in response to environmental stress.
    Nishizawa-Yokoi A; Nosaka R; Hayashi H; Tainaka H; Maruta T; Tamoi M; Ikeda M; Ohme-Takagi M; Yoshimura K; Yabuta Y; Shigeoka S
    Plant Cell Physiol; 2011 May; 52(5):933-45. PubMed ID: 21471117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Consensus by democracy. Using meta-analyses of microarray and genomic data to model the cold acclimation signaling pathway in Arabidopsis.
    Benedict C; Geisler M; Trygg J; Huner N; Hurry V
    Plant Physiol; 2006 Aug; 141(4):1219-32. PubMed ID: 16896234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene Regulatory Networks Mediating Cold Acclimation: The CBF Pathway.
    Barrero-Gil J; Salinas J
    Adv Exp Med Biol; 2018; 1081():3-22. PubMed ID: 30288701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptome profiling and validation of gene based single nucleotide polymorphisms (SNPs) in sorghum genotypes with contrasting responses to cold stress.
    Chopra R; Burow G; Hayes C; Emendack Y; Xin Z; Burke J
    BMC Genomics; 2015 Dec; 16():1040. PubMed ID: 26645959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In silico study on Arabidopsis BAG gene expression in response to environmental stresses.
    Nawkar GM; Maibam P; Park JH; Woo SG; Kim CY; Lee SY; Kang CH
    Protoplasma; 2017 Jan; 254(1):409-421. PubMed ID: 27002965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of regulatory modules in genome scale transcription regulatory networks.
    Song Q; Grene R; Heath LS; Li S
    BMC Syst Biol; 2017 Dec; 11(1):140. PubMed ID: 29246163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative physiology and transcriptional networks underlying the heat shock response in Populus trichocarpa, Arabidopsis thaliana and Glycine max.
    Weston DJ; Karve AA; Gunter LE; Jawdy SS; Yang X; Allen SM; Wullschleger SD
    Plant Cell Environ; 2011 Sep; 34(9):1488-506. PubMed ID: 21554326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soybean DREB1/CBF-type transcription factors function in heat and drought as well as cold stress-responsive gene expression.
    Kidokoro S; Watanabe K; Ohori T; Moriwaki T; Maruyama K; Mizoi J; Myint Phyu Sin Htwe N; Fujita Y; Sekita S; Shinozaki K; Yamaguchi-Shinozaki K
    Plant J; 2015 Feb; 81(3):505-18. PubMed ID: 25495120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histone chaperone ASF1 is involved in gene transcription activation in response to heat stress in Arabidopsis thaliana.
    Weng M; Yang Y; Feng H; Pan Z; Shen WH; Zhu Y; Dong A
    Plant Cell Environ; 2014 Sep; 37(9):2128-38. PubMed ID: 24548003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Transcriptional Cascade in the Heat Stress Response of Arabidopsis Is Strictly Regulated at the Level of Transcription Factor Expression.
    Ohama N; Kusakabe K; Mizoi J; Zhao H; Kidokoro S; Koizumi S; Takahashi F; Ishida T; Yanagisawa S; Shinozaki K; Yamaguchi-Shinozaki K
    Plant Cell; 2016 Jan; 28(1):181-201. PubMed ID: 26715648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Arabidopsis cold-responsive transcriptome and its regulation by ICE1.
    Lee BH; Henderson DA; Zhu JK
    Plant Cell; 2005 Nov; 17(11):3155-75. PubMed ID: 16214899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MultiFacTV: module detection from higher-order time series biological data.
    Li X; Ye Y; Ng M; Wu Q
    BMC Genomics; 2013; 14 Suppl 4(Suppl 4):S2. PubMed ID: 24268038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arabidopsis DPB3-1, a DREB2A interactor, specifically enhances heat stress-induced gene expression by forming a heat stress-specific transcriptional complex with NF-Y subunits.
    Sato H; Mizoi J; Tanaka H; Maruyama K; Qin F; Osakabe Y; Morimoto K; Ohori T; Kusakabe K; Nagata M; Shinozaki K; Yamaguchi-Shinozaki K
    Plant Cell; 2014 Dec; 26(12):4954-73. PubMed ID: 25490919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.