BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 31787185)

  • 1. One-step synthesis of Cu(II) metal-organic gel as recyclable material for rapid, efficient and size selective cationic dyes adsorption.
    Wu Q; He L; Jiang ZW; Li Y; Zhao TT; Li YH; Huang CZ; Li YF
    J Environ Sci (China); 2019 Dec; 86():203-212. PubMed ID: 31787185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of calcium oxalate-bromopyrogallol red inclusion sorbent and application to treatment of cationic dye and heavy metal wastewaters.
    Wang HY; Gao HW
    Environ Sci Pollut Res Int; 2009 May; 16(3):339-47. PubMed ID: 18998184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and Structure of a Copper-Based Functional Network for Efficient Organic Dye Adsorption.
    Wang Q; Wang H; Hu X; Fan Z; Wang Y; Ma P; Niu J; Wang J
    Inorg Chem; 2022 Dec; 61(49):19764-19772. PubMed ID: 36442072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclodextrin modified filter paper for removal of cationic dyes/Cu ions from aqueous solutions.
    Li Y; Zhou Y; Zhou Y; Lei J; Pu S
    Water Sci Technol; 2018 Dec; 78(12):2553-2563. PubMed ID: 30767920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Rapid Synthesis of Metal Organic Framework and Its Adsorption Properties on Anonic Dyes].
    Sun DS; Liu YL; Zhang XD; Qin TT
    Huan Jing Ke Xue; 2016 Mar; 37(3):1016-22. PubMed ID: 27337895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutual effects behind the simultaneous removal of toxic metals and cationic dyes by interlayer-expanded MoS
    Wu Z; Duan Q; Li X; Li J
    Environ Sci Pollut Res Int; 2019 Oct; 26(30):31344-31353. PubMed ID: 31471849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amino-functionalized adsorbent prepared by means of Cu(II) imprinted method and its selective removal of copper from aqueous solutions.
    Peng W; Xie Z; Cheng G; Shi L; Zhang Y
    J Hazard Mater; 2015 Aug; 294():9-16. PubMed ID: 25827392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction of Cu-N coordination into natural biopolymer lignin backbone for highly efficient and selective removal of cationic dyes.
    Li L; Liu X; Duan T; Xu F; Abdulkhani A; Zhang X
    Bioresour Technol; 2023 May; 376():128841. PubMed ID: 36898563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-step modification towards enhancing the adsorption capacity of fly ash for both inorganic Cu(II) and organic methylene blue from aqueous solution.
    Jin H; Liu Y; Wang C; Lei X; Guo M; Cheng F; Zhang M
    Environ Sci Pollut Res Int; 2018 Dec; 25(36):36449-36461. PubMed ID: 30374711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elimination of textile dyes using activated carbons prepared from vegetable residues and their characterization.
    Peláez-Cid AA; Herrera-González AM; Salazar-Villanueva M; Bautista-Hernández A
    J Environ Manage; 2016 Oct; 181():269-278. PubMed ID: 27372249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable surface charge of ZnS:Cu nano-adsorbent induced the selective preconcentration of cationic dyes from wastewater.
    Wang Y; Chen D; Wang Y; Huang F; Hu Q; Lin Z
    Nanoscale; 2012 Jun; 4(12):3665-8. PubMed ID: 22618852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Environmental application of millimeter-scale sponge iron (s-Fe(0)) particles (II): the effect of surface copper.
    Ju Y; Liu X; Liu R; Li G; Wang X; Yang Y; Wei D; Fang J; Dionysiou DD
    J Hazard Mater; 2015 Apr; 287():325-34. PubMed ID: 25668301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and characterization of a novel hybrid chelating material for effective adsorption of Cu(II) and Pb(II).
    Liu Y; Qian P; Yu Y; Yu B; Wang Y; Ye S; Chen Y
    J Environ Sci (China); 2018 May; 67():224-236. PubMed ID: 29778156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zr-Metal Organic Framework and Derivatives for Adsorptive and Photocatalytic Removal of Acid Dyes.
    Lin KA; Yang H; Hsu FK
    Water Environ Res; 2018 Feb; 90(2):144-154. PubMed ID: 29348001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of shaped barium sulfate-dye hybrids: waste dye utilization for eco-friendly treatment of wastewater.
    Gao HW; Lin J; Li WY; Hu ZJ; Zhang YL
    Environ Sci Pollut Res Int; 2010 Jan; 17(1):78-83. PubMed ID: 19844752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effective bioremoval of reactive dye and heavy metals by Aspergillus versicolor.
    Taştan BE; Ertuğrul S; Dönmez G
    Bioresour Technol; 2010 Feb; 101(3):870-6. PubMed ID: 19773159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption and removal of triphenylmethane dyes from water by magnetic reduced graphene oxide.
    Sun JZ; Liao ZH; Si RW; Kingori GP; Chang FX; Gao L; Shen Y; Xiao X; Wu XY; Yong YC
    Water Sci Technol; 2014; 70(10):1663-9. PubMed ID: 25429455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of highly phosphonic acid functionalized benzene-bridged periodic mesoporous organosilicas for use as efficient dye adsorbents.
    Deka JR; Liu CL; Wang TH; Chang WC; Kao HM
    J Hazard Mater; 2014 Aug; 278():539-50. PubMed ID: 25010459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of cationic waste paper and its application in poisonous dye removal.
    Yang F; Song X; Yan L
    Water Sci Technol; 2013; 67(11):2560-7. PubMed ID: 23752389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Some properties of a granular activated carbon-sequencing batch reactor (GAC-SBR) system for treatment of textile wastewater containing direct dyes.
    Sirianuntapiboon S; Sadahiro O; Salee P
    J Environ Manage; 2007 Oct; 85(1):162-70. PubMed ID: 17046148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.