These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 31787314)

  • 21. Enhancement of H
    Yu D; Li Z; Li J; He J; Li B; Wang Y
    J Hazard Mater; 2024 Jan; 462():132618. PubMed ID: 37820526
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Changes in chlorinated organic pollutants and heavy metal content of sediments during pyrolysis.
    Hu Z; Navarro R; Nomura N; Kong H; Wijesekara S; Matsumura M
    Environ Sci Pollut Res Int; 2007 Jan; 14(1):12-8. PubMed ID: 17352123
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative analysis for pyrolysis of sewage sludge in tube reactor heated by electromagnetic induction and electrical resistance furnace.
    Xue Y; Zhou Y; Liu J; Xiao Y; Wang T
    Waste Manag; 2021 Feb; 120():513-521. PubMed ID: 33132001
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermal degradation of PVC: A review.
    Yu J; Sun L; Ma C; Qiao Y; Yao H
    Waste Manag; 2016 Feb; 48():300-314. PubMed ID: 26687228
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of herb residue and high ash-containing paper sludge blends from fixed bed pyrolysis.
    Li T; Guo F; Li X; Liu Y; Peng K; Jiang X; Guo C
    Waste Manag; 2018 Jun; 76():544-554. PubMed ID: 29653883
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fast microwave-assisted catalytic pyrolysis of sewage sludge for bio-oil production.
    Xie Q; Peng P; Liu S; Min M; Cheng Y; Wan Y; Li Y; Lin X; Liu Y; Chen P; Ruan R
    Bioresour Technol; 2014 Nov; 172():162-168. PubMed ID: 25260179
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis on integrated thermal treatment of oil sludge by Aspen Plus.
    Gong Z; Du A; Wang Z; Bai Z; Wang Z
    Waste Manag; 2019 Mar; 87():512-524. PubMed ID: 31109552
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dewatering and low-temperature pyrolysis of oily sludge in the presence of various agricultural biomasses.
    Zhao S; Zhou X; Wang C; Jia H
    Environ Technol; 2018 Nov; 39(21):2715-2723. PubMed ID: 28791935
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Production of bio-oil and biochar from soapstock via microwave-assisted co-catalytic fast pyrolysis.
    Dai L; Fan L; Liu Y; Ruan R; Wang Y; Zhou Y; Zhao Y; Yu Z
    Bioresour Technol; 2017 Feb; 225():1-8. PubMed ID: 27875763
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Study on the effects of catalysts on the immobilization efficiency and mechanism of heavy metals during the microwave pyrolysis of sludge.
    Sun S; Huang X; Lin J; Ma R; Fang L; Zhang P; Qu J; Zhang X; Liu Y
    Waste Manag; 2018 Jul; 77():131-139. PubMed ID: 30008402
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pyrolysis of scrap tyres with zeolite USY.
    Shen B; Wu C; Wang R; Guo B; Liang C
    J Hazard Mater; 2006 Sep; 137(2):1065-73. PubMed ID: 16704900
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Screw pyrolysis technology for sewage sludge treatment.
    Tomasi Morgano M; Leibold H; Richter F; Stapf D; Seifert H
    Waste Manag; 2018 Mar; 73():487-495. PubMed ID: 28601579
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recovery of energy and iron from oily sludge pyrolysis in a fluidized bed reactor.
    Qin L; Han J; He X; Zhan Y; Yu F
    J Environ Manage; 2015 May; 154():177-82. PubMed ID: 25728916
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The stabilization of tannery sludge and the character of humic acid-like during low temperature pyrolysis.
    Ma H; Gao M; Hua L; Chao H; Xu J
    Environ Sci Pollut Res Int; 2015 Nov; 22(21):16791-802. PubMed ID: 26092361
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novel Staged Free-Fall Reactor for the (Catalytic) Pyrolysis of Lignocellulosic Biomass and Waste Plastics.
    He S; Osorio Velasco J; Strien JRJ; Zhang Z; Bianchetti SM; Badr P; Sridharan B; van de Bovenkamp HH; Venderbosch RH; Bijl A; Heeres HJ
    Energy Fuels; 2024 May; 38(10):8740-8748. PubMed ID: 38774064
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of hydrothermal carbonization on migration and environmental risk of heavy metals in sewage sludge during pyrolysis.
    Liu T; Liu Z; Zheng Q; Lang Q; Xia Y; Peng N; Gai C
    Bioresour Technol; 2018 Jan; 247():282-290. PubMed ID: 28950137
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Distribution of Hg during sewage sludge and municipal solid waste Co-pyrolysis: Influence of multiple factors.
    Sun Y; Tao J; Chen G; Yan B; Cheng Z
    Waste Manag; 2020 Apr; 107():276-284. PubMed ID: 32320940
    [TBL] [Abstract][Full Text] [Related]  

  • 38. BTEX recovery from waste rubbers by catalytic pyrolysis over Zn loaded tire derived char.
    Pan Y; Sima J; Wang X; Zhou Y; Huang Q
    Waste Manag; 2021 Jul; 131():214-225. PubMed ID: 34167041
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A technical and economic evaluation of the pyrolysis of sewage sludge for the production of bio-oil.
    Kim Y; Parker W
    Bioresour Technol; 2008 Mar; 99(5):1409-16. PubMed ID: 17383872
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surface characteristics and potential ecological risk evaluation of heavy metals in the bio-char produced by co-pyrolysis from municipal sewage sludge and hazelnut shell with zinc chloride.
    Zhao B; Xu X; Xu S; Chen X; Li H; Zeng F
    Bioresour Technol; 2017 Nov; 243():375-383. PubMed ID: 28686928
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.