These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
326 related articles for article (PubMed ID: 31787376)
1. Voltage Sensor Movements during Hyperpolarization in the HCN Channel. Lee CH; MacKinnon R Cell; 2019 Dec; 179(7):1582-1589.e7. PubMed ID: 31787376 [TBL] [Abstract][Full Text] [Related]
2. The HCN domain is required for HCN channel cell-surface expression and couples voltage- and cAMP-dependent gating mechanisms. Wang ZJ; Blanco I; Hayoz S; Brelidze TI J Biol Chem; 2020 Jun; 295(24):8164-8173. PubMed ID: 32341127 [TBL] [Abstract][Full Text] [Related]
3. The S4-S5 linker couples voltage sensing and activation of pacemaker channels. Chen J; Mitcheson JS; Tristani-Firouzi M; Lin M; Sanguinetti MC Proc Natl Acad Sci U S A; 2001 Sep; 98(20):11277-82. PubMed ID: 11553787 [TBL] [Abstract][Full Text] [Related]
4. Voltage-dependent gating of hyperpolarization-activated, cyclic nucleotide-gated pacemaker channels: molecular coupling between the S4-S5 and C-linkers. Decher N; Chen J; Sanguinetti MC J Biol Chem; 2004 Apr; 279(14):13859-65. PubMed ID: 14726518 [TBL] [Abstract][Full Text] [Related]
5. Structures of the Human HCN1 Hyperpolarization-Activated Channel. Lee CH; MacKinnon R Cell; 2017 Jan; 168(1-2):111-120.e11. PubMed ID: 28086084 [TBL] [Abstract][Full Text] [Related]
6. Electromechanical coupling mechanism for activation and inactivation of an HCN channel. Dai G; Aman TK; DiMaio F; Zagotta WN Nat Commun; 2021 May; 12(1):2802. PubMed ID: 33990563 [TBL] [Abstract][Full Text] [Related]
7. A second S4 movement opens hyperpolarization-activated HCN channels. Wu X; Ramentol R; Perez ME; Noskov SY; Larsson HP Proc Natl Acad Sci U S A; 2021 Sep; 118(37):. PubMed ID: 34504015 [TBL] [Abstract][Full Text] [Related]
8. Structural basis for hyperpolarization-dependent opening of human HCN1 channel. Burtscher V; Mount J; Huang J; Cowgill J; Chang Y; Bickel K; Chen J; Yuan P; Chanda B Nat Commun; 2024 Jun; 15(1):5216. PubMed ID: 38890331 [TBL] [Abstract][Full Text] [Related]
9. Helix breaking transition in the S4 of HCN channel is critical for hyperpolarization-dependent gating. Kasimova MA; Tewari D; Cowgill JB; Ursuleaz WC; Lin JL; Delemotte L; Chanda B Elife; 2019 Nov; 8():. PubMed ID: 31774399 [TBL] [Abstract][Full Text] [Related]
10. The HCN channel voltage sensor undergoes a large downward motion during hyperpolarization. Dai G; Aman TK; DiMaio F; Zagotta WN Nat Struct Mol Biol; 2019 Aug; 26(8):686-694. PubMed ID: 31285608 [TBL] [Abstract][Full Text] [Related]
11. Structural changes during HCN channel gating defined by high affinity metal bridges. Kwan DC; Prole DL; Yellen G J Gen Physiol; 2012 Sep; 140(3):279-91. PubMed ID: 22930802 [TBL] [Abstract][Full Text] [Related]
12. Changes in local S4 environment provide a voltage-sensing mechanism for mammalian hyperpolarization-activated HCN channels. Bell DC; Yao H; Saenger RC; Riley JH; Siegelbaum SA J Gen Physiol; 2004 Jan; 123(1):5-19. PubMed ID: 14676285 [TBL] [Abstract][Full Text] [Related]
13. Loose Coupling between the Voltage Sensor and the Activation Gate in Mammalian HCN Channels Suggests a Gating Mechanism. Wu X; Cunningham KP; Bruening-Wright A; Pandey S; Larsson HP Int J Mol Sci; 2024 Apr; 25(8):. PubMed ID: 38673895 [TBL] [Abstract][Full Text] [Related]
14. Bipolar switching by HCN voltage sensor underlies hyperpolarization activation. Cowgill J; Klenchin VA; Alvarez-Baron C; Tewari D; Blair A; Chanda B Proc Natl Acad Sci U S A; 2019 Jan; 116(2):670-678. PubMed ID: 30587580 [TBL] [Abstract][Full Text] [Related]
15. Interplay between VSD, pore, and membrane lipids in electromechanical coupling in HCN channels. Elbahnsi A; Cowgill J; Burtscher V; Wedemann L; Zeckey L; Chanda B; Delemotte L Elife; 2023 Jun; 12():. PubMed ID: 37341381 [TBL] [Abstract][Full Text] [Related]
16. Insights into the molecular mechanism for hyperpolarization-dependent activation of HCN channels. Flynn GE; Zagotta WN Proc Natl Acad Sci U S A; 2018 Aug; 115(34):E8086-E8095. PubMed ID: 30076228 [TBL] [Abstract][Full Text] [Related]
17. Involvement of the S4-S5 linker and the C-linker domain regions to voltage-gating in plant Shaker channels: comparison with animal HCN and Kv channels. Nieves-Cordones M; Gaillard I Plant Signal Behav; 2014; 9(10):e972892. PubMed ID: 25482770 [TBL] [Abstract][Full Text] [Related]
18. Similar voltage-sensor movement in spHCN channels can cause closing, opening, or inactivation. Wu X; Cunningham KP; Ramentol R; Perez ME; Larsson HP J Gen Physiol; 2023 May; 155(5):. PubMed ID: 36752823 [TBL] [Abstract][Full Text] [Related]
19. Mechanical transduction of cytoplasmic-to-transmembrane-domain movements in a hyperpolarization-activated cyclic nucleotide-gated cation channel. Gross C; Saponaro A; Santoro B; Moroni A; Thiel G; Hamacher K J Biol Chem; 2018 Aug; 293(33):12908-12918. PubMed ID: 29936413 [TBL] [Abstract][Full Text] [Related]
20. The HCN domain couples voltage gating and cAMP response in hyperpolarization-activated cyclic nucleotide-gated channels. Porro A; Saponaro A; Gasparri F; Bauer D; Gross C; Pisoni M; Abbandonato G; Hamacher K; Santoro B; Thiel G; Moroni A Elife; 2019 Nov; 8():. PubMed ID: 31769408 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]