These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 3178751)

  • 1. The plasma-membrane component is the primary site of action of alloxan on ATP-driven Ca2+ transport in vascular-muscle microsomal fractions.
    Kwan CY
    Biochem J; 1988 Aug; 254(1):293-6. PubMed ID: 3178751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of inhibition by alloxan of ATP-driven calcium transport by vascular smooth muscle microsomes.
    Kwan CY; Beazley JS
    J Bioenerg Biomembr; 1988 Aug; 20(4):517-31. PubMed ID: 2975655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro inhibition of calcium binding by alloxan and of calcium transport by isolated vascular smooth muscle microsomes.
    Kwan CY; Beazley JS
    Can J Physiol Pharmacol; 1987 Nov; 65(11):2346-9. PubMed ID: 3449192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subcellular origin of the oxalate- or inorganic phosphate-stimulated Ca2+ transport by smooth muscle microsomes: revisitation of the old problem by a new approach using saponin.
    Kwan CY
    Biochim Biophys Acta; 1985 Sep; 819(1):148-52. PubMed ID: 2931116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective inhibition of oxalate-stimulated Ca2+ transport by cyclopiazonic acid and thapsigargin in smooth muscle microsomes.
    Darby PJ; Kwan CY; Daniel EE
    Can J Physiol Pharmacol; 1996 Feb; 74(2):182-92. PubMed ID: 8723031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An analytical approach to the preparation and characterization of subcellular membranes from canine mesenteric arteries.
    Kwan CY; Triggle CR; Grover AK; Lee RM; Daniel EE
    Prep Biochem; 1983; 13(4):275-314. PubMed ID: 6647416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tris inhibits binding and transport of calcium in microsomal fraction isolated from rat vas deferens.
    Kwan CY; Sakai Y; Daniel EE
    Arch Int Pharmacodyn Ther; 1984 Jun; 269(2):252-62. PubMed ID: 6476981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ca2+ handling properties of microsomal subfractions of rat vas deferens smooth muscle.
    Grover AK; Kwan CY
    Can J Physiol Pharmacol; 1984 Jan; 62(1):76-9. PubMed ID: 6713285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions of saponin with microsomal membranes isolated from vascular smooth muscle.
    Kwan CY; Osterroth A; Sipos SN; Kosta P; Beazley JS; Guan YY; Daniel EE
    Arch Int Pharmacodyn Ther; 1988; 291():55-67. PubMed ID: 2835023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane fractionation of canine aortic smooth muscle: subcellular distribution of calcium transport activity.
    Kwan CY; Triggle CR; Grover AK; Lee RM; Daniel EE
    J Mol Cell Cardiol; 1984 Aug; 16(8):747-64. PubMed ID: 6090679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the oxalate stimulation of ATP-dependent calcium accumulation by smooth muscle subcellular membranes.
    Kwan CY; Grover AK; Triggle CR; Daniel EE
    Biochem Int; 1983 Jun; 6(6):713-22. PubMed ID: 6679732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of ATP-driven calcium uptake in renal basal-lateral and renal endoplasmic reticulum membrane vesicles.
    Parys JB; De Smedt H; Vandenberghe P; Borghgraef R
    Cell Calcium; 1985 Oct; 6(5):413-29. PubMed ID: 2416455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differentiation of Ca2+ pumps linked to plasma membrane and endoplasmic reticulum in the microsomal fraction from intestinal smooth muscle.
    Wibo M; Morel N; Godfraind T
    Biochim Biophys Acta; 1981 Dec; 649(3):651-60. PubMed ID: 6459127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation of a plasma-membrane fraction from gastric smooth muscle. Comparison of the calcium uptake with that in endoplasmic reticulum.
    Raeymaekers L; Wuytack F; Eggermont J; De Schutter G; Casteels R
    Biochem J; 1983 Feb; 210(2):315-22. PubMed ID: 6860302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of Ca++ incorporation in microsomal fractions from bovine, canine and rabbit aortic smooth muscle.
    Kutsky P; Weiss GB
    Arch Int Pharmacodyn Ther; 1982 Dec; 260(2):196-205. PubMed ID: 7165426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATP-dependent calcium accumulation in brain microsomes. Enhancement by phosphate and oxalate.
    Trotta EE; de Meis L
    Biochim Biophys Acta; 1975 Jun; 394(2):239-47. PubMed ID: 124599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence that ATP-dependent Ca2+ transport in rat parotid microsomal membranes requires charge compensation.
    Baum BJ; Ambudkar IS; Horn VJ
    Biochem J; 1988 Sep; 254(3):649-54. PubMed ID: 2848492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Some properties of Ca-binding microsomal subfractions isolated from rabbit colon muscle.
    Nilsson KB; Andersson RG; Mohme-Lundholm E; Lundholm L
    Acta Pharmacol Toxicol (Copenh); 1978 Mar; 42(3):185-93. PubMed ID: 580347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alloxan inhibits ligand binding to adrenoceptors of vascular smooth muscle microsomes.
    Kwan CY; Sipos S; Gaspar V
    Biochem J; 1990 Aug; 270(1):137-40. PubMed ID: 2396973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy-dependent calcium uptake activity of microsomes from the aorta of normal and hypertensive rats.
    Moore L; Hurwitz L; Davenport GR; Landon EJ
    Biochim Biophys Acta; 1975 Dec; 413(3):432-43. PubMed ID: 1191698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.