These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
350 related articles for article (PubMed ID: 31787641)
1. [Preparation and Evaluation of Fullerene Based Nanomedicine]. Iohara D Yakugaku Zasshi; 2019; 139(12):1539-1546. PubMed ID: 31787641 [TBL] [Abstract][Full Text] [Related]
2. Preparation of hydrophilic C60(OH)10/2-hydroxypropyl-β-cyclodextrin nanoparticles for the treatment of a liver injury induced by an overdose of acetaminophen. Umezaki Y; Iohara D; Anraku M; Ishitsuka Y; Irie T; Uekama K; Hirayama F Biomaterials; 2015 Mar; 45():115-23. PubMed ID: 25662501 [TBL] [Abstract][Full Text] [Related]
3. In Vitro and In Vivo Evaluation of Hydrophilic C60(OH)10/2-Hydroxypropyl-β-cyclodextrin Nanoparticles as an Antioxidant. Iohara D; Umezaki Y; Anraku M; Uekama K; Hirayama F J Pharm Sci; 2016 Sep; 105(9):2959-2965. PubMed ID: 27317367 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of photodynamic activity of C60/2-hydroxypropyl-β-cyclodextrin nanoparticles. Iohara D; Hiratsuka M; Hirayama F; Takeshita K; Motoyama K; Arima H; Uekama K J Pharm Sci; 2012 Sep; 101(9):3390-7. PubMed ID: 22228093 [TBL] [Abstract][Full Text] [Related]
5. Graphene oxide-fullerene C Li Q; Hong L; Li H; Liu C Biosens Bioelectron; 2017 Mar; 89(Pt 1):477-482. PubMed ID: 27055602 [TBL] [Abstract][Full Text] [Related]
6. Biological applications of hydrophilic C60 derivatives (hC60s)- a structural perspective. Zhu X; Sollogoub M; Zhang Y Eur J Med Chem; 2016 Jun; 115():438-52. PubMed ID: 27049677 [TBL] [Abstract][Full Text] [Related]
7. [Effect of polymer carrier origin and physical state on fullerene C60 phototoxicity in vitro]. Eropkin MIu; Piotrovskiĭ LB; Eropkina EM; Dumpis MA; Litasova EV; Kiselev OI Eksp Klin Farmakol; 2011; 74(1):28-31. PubMed ID: 21476272 [TBL] [Abstract][Full Text] [Related]
8. Highly hydroxylated or gamma-cyclodextrin-bicapped water-soluble derivative of fullerene: the antioxidant ability assessed by electron spin resonance method and beta-carotene bleaching assay. Kato S; Aoshima H; Saitoh Y; Miwa N Bioorg Med Chem Lett; 2009 Sep; 19(18):5293-6. PubMed ID: 19683919 [TBL] [Abstract][Full Text] [Related]
9. Preparation of soluble stable C₆₀/human serum albumin nanoparticles via cyclodextrin complexation and their reactive oxygen production characteristics. Abdulmalik A; Hibah A; Zainy BM; Makoto A; Daisuke I; Masaki O; Kaneto U; Fumitoshi H Life Sci; 2013 Aug; 93(7):277-82. PubMed ID: 23850514 [TBL] [Abstract][Full Text] [Related]
10. [Fullerenes in biology]. Krokosz A Postepy Biochem; 2007; 53(1):91-6. PubMed ID: 17718393 [TBL] [Abstract][Full Text] [Related]
11. Biomedical potential of the reactive oxygen species generation and quenching by fullerenes (C60). Markovic Z; Trajkovic V Biomaterials; 2008 Sep; 29(26):3561-73. PubMed ID: 18534675 [TBL] [Abstract][Full Text] [Related]
12. Comparative computational study of interaction of C60-fullerene and tris-malonyl-C60-fullerene isomers with lipid bilayer: relation to their antioxidant effect. Bozdaganyan ME; Orekhov PS; Shaytan AK; Shaitan KV PLoS One; 2014; 9(7):e102487. PubMed ID: 25019215 [TBL] [Abstract][Full Text] [Related]
13. Fullerene (C60)-based tumor-targeting nanoparticles with "off-on" state for enhanced treatment of cancer. Shi J; Wang B; Wang L; Lu T; Fu Y; Zhang H; Zhang Z J Control Release; 2016 Aug; 235():245-258. PubMed ID: 27276066 [TBL] [Abstract][Full Text] [Related]
14. Peculiarities of the antioxidant and radioprotective effects of hydrated C60 fullerene nanostuctures in vitro and in vivo. Andrievsky GV; Bruskov VI; Tykhomyrov AA; Gudkov SV Free Radic Biol Med; 2009 Sep; 47(6):786-93. PubMed ID: 19539750 [TBL] [Abstract][Full Text] [Related]
15. Preparation and characterization of fullerene (C60) amino acid nanoparticles for liver cancer cell treatment. Li Z; Pan LL; Zhang FL; Wang Z; Shen YY; Zhang ZZ J Nanosci Nanotechnol; 2014 Jun; 14(6):4513-8. PubMed ID: 24738422 [TBL] [Abstract][Full Text] [Related]
16. Induction of Endogenous Reactive Oxygen Species in Mitochondria by Fullerene-Based Photodynamic Therapy. Li Q; Liu C; Li H J Nanosci Nanotechnol; 2016 Jun; 16(6):5592-7. PubMed ID: 27427601 [TBL] [Abstract][Full Text] [Related]
17. Improved photodynamic activities of liposome-incorporated [60]fullerene derivatives bearing a polar group. Ikeda A; Mae T; Ueda M; Sugikawa K; Shigeto H; Funabashi H; Kuroda A; Akiyama M Chem Commun (Camb); 2017 Mar; 53(20):2966-2969. PubMed ID: 28233000 [TBL] [Abstract][Full Text] [Related]
18. Protective effect of reduced glutathione C60 derivative against hydrogen peroxide-induced apoptosis in HEK 293T cells. Huang J; Zhou C; He J; Hu Z; Guan WC; Liu SH J Huazhong Univ Sci Technolog Med Sci; 2016 Jun; 36(3):356-363. PubMed ID: 27376803 [TBL] [Abstract][Full Text] [Related]
19. A tumoral acidic pH-responsive drug delivery system based on a novel photosensitizer (fullerene) for in vitro and in vivo chemo-photodynamic therapy. Shi J; Liu Y; Wang L; Gao J; Zhang J; Yu X; Ma R; Liu R; Zhang Z Acta Biomater; 2014 Mar; 10(3):1280-91. PubMed ID: 24211343 [TBL] [Abstract][Full Text] [Related]
20. Anticancer effects of fullerene [C60] included in polyethylene glycol combined with visible light irradiation through ROS generation and DNA fragmentation on fibrosarcoma cells with scarce cytotoxicity to normal fibroblasts. Liao F; Saitoh Y; Miwa N Oncol Res; 2011; 19(5):203-16. PubMed ID: 21542456 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]