These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 31788026)
21. Development of minimal enzyme cocktails for hydrolysis of sulfite-pulped lignocellulosic biomass. Chylenski P; Forsberg Z; Ståhlberg J; Várnai A; Lersch M; Bengtsson O; Sæbø S; Horn SJ; Eijsink VGH J Biotechnol; 2017 Mar; 246():16-23. PubMed ID: 28219736 [TBL] [Abstract][Full Text] [Related]
22. Insights into the H Qin X; Yang K; Wang X; Tu T; Wang Y; Zhang J; Su X; Yao B; Huang H; Luo H J Agric Food Chem; 2023 May; 71(21):8104-8111. PubMed ID: 37204864 [TBL] [Abstract][Full Text] [Related]
23. Redox processes acidify and decarboxylate steam-pretreated lignocellulosic biomass and are modulated by LPMO and catalase. Peciulyte A; Samuelsson L; Olsson L; McFarland KC; Frickmann J; Østergård L; Halvorsen R; Scott BR; Johansen KS Biotechnol Biofuels; 2018; 11():165. PubMed ID: 29946356 [TBL] [Abstract][Full Text] [Related]
24. Synergistic Action of a Lytic Polysaccharide Monooxygenase and a Cellobiohydrolase from Ogunyewo OA; Randhawa A; Gupta M; Kaladhar VC; Verma PK; Yazdani SS Appl Environ Microbiol; 2020 Nov; 86(23):. PubMed ID: 32978122 [TBL] [Abstract][Full Text] [Related]
25. Effects of Lignin-Diverted Reductant with Polyphenol Oxidases on Cellulose Degradation by Wild and Mutant Types of Lytic Polysaccharide Monooxygenase. Li K; Wang Y; Guo X; Wang B Curr Issues Mol Biol; 2024 Apr; 46(4):3694-3712. PubMed ID: 38666960 [TBL] [Abstract][Full Text] [Related]
26. A Lytic Polysaccharide Monooxygenase with Broad Xyloglucan Specificity from the Brown-Rot Fungus Gloeophyllum trabeum and Its Action on Cellulose-Xyloglucan Complexes. Kojima Y; Várnai A; Ishida T; Sunagawa N; Petrovic DM; Igarashi K; Jellison J; Goodell B; Alfredsen G; Westereng B; Eijsink VG; Yoshida M Appl Environ Microbiol; 2016 Nov; 82(22):6557-6572. PubMed ID: 27590806 [TBL] [Abstract][Full Text] [Related]
27. Kinetic insights into the role of the reductant in H Kuusk S; Kont R; Kuusk P; Heering A; Sørlie M; Bissaro B; Eijsink VGH; Väljamäe P J Biol Chem; 2019 Feb; 294(5):1516-1528. PubMed ID: 30514757 [TBL] [Abstract][Full Text] [Related]
31. Steam pressure disruption of municipal solid waste enhances anaerobic digestion kinetics and biogas yield. Liu HW; Walter HK; Vogt GM; Vogt HS; Holbein BE Biotechnol Bioeng; 2002 Jan; 77(2):121-30. PubMed ID: 11753918 [TBL] [Abstract][Full Text] [Related]
32. Enhanced in situ H Stepnov AA; Eijsink VGH; Forsberg Z Sci Rep; 2022 Apr; 12(1):6129. PubMed ID: 35414104 [TBL] [Abstract][Full Text] [Related]
33. A highly xyloglucan active lytic polysaccharide monooxygenase EpLPMO9A from Eupenicillium parvum 4-14 shows boosting effect on hydrolysis of complex lignocellulosic substrates. Shi Y; Chen K; Long L; Ding S Int J Biol Macromol; 2021 Jan; 167():202-213. PubMed ID: 33271180 [TBL] [Abstract][Full Text] [Related]
34. The Contribution of Non-catalytic Carbohydrate Binding Modules to the Activity of Lytic Polysaccharide Monooxygenases. Crouch LI; Labourel A; Walton PH; Davies GJ; Gilbert HJ J Biol Chem; 2016 Apr; 291(14):7439-49. PubMed ID: 26801613 [TBL] [Abstract][Full Text] [Related]
35. On the functional characterization of lytic polysaccharide monooxygenases (LPMOs). Eijsink VGH; Petrovic D; Forsberg Z; Mekasha S; Røhr ÅK; Várnai A; Bissaro B; Vaaje-Kolstad G Biotechnol Biofuels; 2019; 12():58. PubMed ID: 30923566 [TBL] [Abstract][Full Text] [Related]
36. Oxidative Machinery of basidiomycetes as potential enhancers in lignocellulosic biorefineries: A lytic polysaccharide monooxygenases approach. Grace Barrios-Gutiérrez S; Inés Vélez-Mercado M; Rodrigues Ortega J; da Silva Lima A; Luiza da Rocha Fortes Saraiva A; Leila Berto G; Segato F Bioresour Technol; 2023 Oct; 386():129481. PubMed ID: 37437815 [TBL] [Abstract][Full Text] [Related]
37. Enhanced Fenton Reaction for Xenobiotic Compounds and Lignin Degradation Fueled by Quinone Redox Cycling by Lytic Polysaccharide Monooxygenases. Li F; Zhao H; Shao R; Zhang X; Yu H J Agric Food Chem; 2021 Jun; ():. PubMed ID: 34130454 [TBL] [Abstract][Full Text] [Related]
38. Comparative analysis of two recombinant LPMOs from Aspergillus fumigatus and their effects on sugarcane bagasse saccharification. Velasco J; de Oliveira Arnoldi Pellegrini V; Sepulchro AGV; Kadowaki MAS; Santo MCE; Polikarpov I; Segato F Enzyme Microb Technol; 2021 Mar; 144():109746. PubMed ID: 33541573 [TBL] [Abstract][Full Text] [Related]
39. Lytic Polysaccharide Monooxygenase from Aspergillus fumigatus can Improve Enzymatic Cocktail Activity During Sugarcane Bagasse Hydrolysis. de Gouvêa PF; Gerolamo LE; Bernardi AV; Pereira LMS; Uyemura SA; Dinamarco TM Protein Pept Lett; 2019; 26(5):377-385. PubMed ID: 31237199 [TBL] [Abstract][Full Text] [Related]
40. Revisiting the role of electron donors in lytic polysaccharide monooxygenase biochemistry. Hemsworth GR Essays Biochem; 2023 Apr; 67(3):585-595. PubMed ID: 36748351 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]