BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 31788027)

  • 1. Genomic analysis of
    Morya R; Kumar M; Singh SS; Thakur IS
    Biotechnol Biofuels; 2019; 12():277. PubMed ID: 31788027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioconversion of syringyl lignin into malic acid by Burkholderia sp. ISTR5.
    Morya R; Kumar M; Shekhar Thakur I
    Bioresour Technol; 2021 Jun; 330():124981. PubMed ID: 33756182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic and proteomic analysis of lignin degrading and polyhydroxyalkanoate accumulating β-proteobacterium
    Kumar M; Verma S; Gazara RK; Kumar M; Pandey A; Verma PK; Thakur IS
    Biotechnol Biofuels; 2018; 11():154. PubMed ID: 29991962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Catabolic System of Acetovanillone and Acetosyringone in
    Higuchi Y; Kamimura N; Takenami H; Kikuiri Y; Yasuta C; Tanatani K; Shobuda T; Otsuka Y; Nakamura M; Sonoki T; Masai E
    Appl Environ Microbiol; 2022 Aug; 88(16):e0072422. PubMed ID: 35938864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anaerobic Degradation of Syringic Acid by an Adapted Strain of Rhodopseudomonas palustris.
    Oshlag JZ; Ma Y; Morse K; Burger BT; Lemke RA; Karlen SD; Myers KS; Donohue TJ; Noguera DR
    Appl Environ Microbiol; 2020 Jan; 86(3):. PubMed ID: 31732577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodegradation of Lignin Monomers Vanillic, p-Coumaric, and Syringic Acid by the Bacterial Strain, Sphingobacterium sp. HY-H.
    Wang J; Liang J; Gao S
    Curr Microbiol; 2018 Sep; 75(9):1156-1164. PubMed ID: 29750329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon Source-Dependent Inducible Metabolism of Veratryl Alcohol and Ferulic Acid in Pseudomonas putida CSV86.
    Mohan K; Phale PS
    Appl Environ Microbiol; 2017 Apr; 83(8):. PubMed ID: 28188206
    [No Abstract]   [Full Text] [Related]  

  • 8. Lignolytic-consortium omics analyses reveal novel genomes and pathways involved in lignin modification and valorization.
    Moraes EC; Alvarez TM; Persinoti GF; Tomazetto G; Brenelli LB; Paixão DAA; Ematsu GC; Aricetti JA; Caldana C; Dixon N; Bugg TDH; Squina FM
    Biotechnol Biofuels; 2018; 11():75. PubMed ID: 29588660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradation of lignin monomers and bioconversion of ferulic acid to vanillic acid by Paraburkholderia aromaticivorans AR20-38 isolated from Alpine forest soil.
    Margesin R; Volgger G; Wagner AO; Zhang D; Poyntner C
    Appl Microbiol Biotechnol; 2021 Apr; 105(7):2967-2977. PubMed ID: 33687503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Funneling lignin-derived compounds into polyhydroxyalkanoate by Halomonas sp. Y3.
    Tang H; Wang MJ; Gan XF; Li YQ
    Bioresour Technol; 2022 Oct; 362():127837. PubMed ID: 36031122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biofuneling lignin-derived compounds into lipids using a newly isolated Citricoccus sp. P2.
    Wang Y; Luo CB; Li YQ
    Bioresour Technol; 2023 Nov; 387():129669. PubMed ID: 37573985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complete genome reveals genetic repertoire and potential metabolic strategies involved in lignin degradation by environmental ligninolytic Klebsiella variicola P1CD1.
    Dos Santos Melo-Nascimento AO; Mota Moitinho Sant Anna B; Gonçalves CC; Santos G; Noronha E; Parachin N; de Abreu Roque MR; Bruce T
    PLoS One; 2020; 15(12):e0243739. PubMed ID: 33351813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatic and genetic characterization of lignin depolymerization by Streptomyces sp. S6 isolated from a tropical environment.
    Riyadi FA; Tahir AA; Yusof N; Sabri NSA; Noor MJMM; Akhir FNMD; Othman N; Zakaria Z; Hara H
    Sci Rep; 2020 May; 10(1):7813. PubMed ID: 32385385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exoproteomic Study and Transcriptional Responses of Laccase and Ligninolytic Peroxidase Genes of White-Rot Fungus
    Moiseenko KV; Glazunova OA; Savinova OS; Fedorova TV
    Int J Mol Sci; 2023 Aug; 24(17):. PubMed ID: 37685920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic insights into the metabolic potential of a novel lignin-degrading and polyhydroxyalkanoates producing bacterium Pseudomonas sp. Hu109A.
    Nawaz MZ; Shang H; Sun J; Geng A; Ali SS; Zhu D
    Chemosphere; 2023 Jan; 310():136754. PubMed ID: 36228733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aromatic catabolic pathway selection for optimal production of pyruvate and lactate from lignin.
    Johnson CW; Beckham GT
    Metab Eng; 2015 Mar; 28():240-247. PubMed ID: 25617773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation of trans-ferulic and p-coumaric acid by Acinetobacter calcoaceticus DSM 586.
    Delneri D; Degrassi G; Rizzo R; Bruschi CV
    Biochim Biophys Acta; 1995 Jun; 1244(2-3):363-7. PubMed ID: 7599157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redundancy in aromatic O-demethylation and ring opening reactions in
    Perez JM; Kontur WS; Gehl C; Gille DM; Ma Y; Niles AV; Umana G; Donohue TJ; Noguera DR
    Appl Environ Microbiol; 2021 Apr; 87(8):. PubMed ID: 33579679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating lignin degradation under limited oxygen conditions by bacterial isolates from forest soil.
    Sumranwanich T; Amosu E; Chankhamhaengdecha S; Phetruen T; Loktumraks W; Ounjai P; Harnvoravongchai P
    Sci Rep; 2024 Jun; 14(1):13350. PubMed ID: 38858437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Depolymerization of lignin using laccase from Bacillus sp. PCH94 for production of valuable chemicals: A sustainable approach for lignin valorization.
    Ambika ; Kumar V; Chandra D; Thakur V; Sharma U; Singh D
    Int J Biol Macromol; 2023 Apr; 234():123601. PubMed ID: 36775222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.