These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 31788027)

  • 21. Production of Monomeric Aromatic Compounds from Oil Palm Empty Fruit Bunch Fiber Lignin by Chemical and Enzymatic Methods.
    Tang PL; Hassan O; Maskat MY; Badri K
    Biomed Res Int; 2015; 2015():891539. PubMed ID: 26798644
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Insights into lignin degradation and its potential industrial applications.
    Abdel-Hamid AM; Solbiati JO; Cann IK
    Adv Appl Microbiol; 2013; 82():1-28. PubMed ID: 23415151
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The catabolism of lignin-derived
    Wolf ME; Lalande AT; Newman BL; Bleem AC; Palumbo CT; Beckham GT; Eltis LD
    Appl Environ Microbiol; 2024 Mar; 90(3):e0215523. PubMed ID: 38380926
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification and characterization of methoxy- and dimethoxyhydroquinone 1,2-dioxygenase from
    Kato H; Takahashi Y; Suzuki H; Ohashi K; Kawashima R; Nakamura K; Sakai K; Hori C; Takasuka TE; Kato M; Shimizu M
    Appl Environ Microbiol; 2024 Feb; 90(2):e0175323. PubMed ID: 38259078
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Integrative omics analyses of the ligninolytic Rhodosporidium fluviale LM-2 disclose catabolic pathways for biobased chemical production.
    Vilela N; Tomazetto G; Gonçalves TA; Sodré V; Persinoti GF; Moraes EC; de Oliveira AHC; da Silva SN; Fill TP; Damasio A; Squina FM
    Biotechnol Biofuels Bioprod; 2023 Jan; 16(1):5. PubMed ID: 36624471
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Production of Recombinant Laccase From
    Kontro J; Lyra C; Koponen M; Kuuskeri J; Kähkönen MA; Wallenius J; Wan X; Sipilä J; Mäkelä MR; Nousiainen P; Hildén K
    Front Bioeng Biotechnol; 2021; 9():767139. PubMed ID: 34858962
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Low-Temperature Biodegradation of Lignin-Derived Aromatic Model Monomers by the Cold-Adapted Yeast
    Margesin R; Ludwikowski TM; Kutzner A; Wagner AO
    Microorganisms; 2022 Feb; 10(3):. PubMed ID: 35336090
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Degradation of non-phenolic beta-o-4 lignin substructure model compounds by Acinetobacter sp.
    Vasudevan N; Mahadevan A
    Res Microbiol; 1992; 143(3):333-9. PubMed ID: 1448618
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ligninolytic enzymes and its mechanisms for degradation of lignocellulosic waste in environment.
    Kumar A; Chandra R
    Heliyon; 2020 Feb; 6(2):e03170. PubMed ID: 32095645
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Isolation and characterization marine bacteria capable of degrading lignin-derived compounds.
    Lu P; Wang W; Zhang G; Li W; Jiang A; Cao M; Zhang X; Xing K; Peng X; Yuan B; Feng Z
    PLoS One; 2020; 15(10):e0240187. PubMed ID: 33027312
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Novel Gene Cluster Is Involved in the Degradation of Lignin-Derived Monoaromatics in Thermus oshimai JL-2.
    Chakraborty J; Suzuki-Minakuchi C; Tomita T; Okada K; Nojiri H
    Appl Environ Microbiol; 2021 May; 87(11):. PubMed ID: 33741620
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genomics analysis and degradation characteristics of lignin by Streptomyces thermocarboxydus strain DF3-3.
    Tan F; Cheng J; Zhang Y; Jiang X; Liu Y
    Biotechnol Biofuels Bioprod; 2022 Jul; 15(1):78. PubMed ID: 35831866
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fungal pretreatment of sweet sorghum bagasse with supplements: improvement in lignin degradation, selectivity and enzymatic saccharification.
    Mishra V; Jana AK; Jana MM; Gupta A
    3 Biotech; 2017 Jun; 7(2):110. PubMed ID: 28567622
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of Two Marine Lignin-Degrading Consortia and the Potential Microbial Lignin Degradation Network in Nearshore Regions.
    Ley Y; Cheng XY; Ying ZY; Zhou NY; Xu Y
    Microbiol Spectr; 2023 Jun; 11(3):e0442422. PubMed ID: 37042774
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigating the degradation process of kraft lignin by β-proteobacterium, Pandoraea sp. ISTKB.
    Kumar M; Singh J; Singh MK; Singhal A; Thakur IS
    Environ Sci Pollut Res Int; 2015 Oct; 22(20):15690-702. PubMed ID: 26018290
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protocatechuic acid production from lignin-associated phenolics.
    Upadhyay P; Lali A
    Prep Biochem Biotechnol; 2021; 51(10):979-984. PubMed ID: 33583338
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lignin valorization using biological approach.
    Singhvi M; Kim BS
    Biotechnol Appl Biochem; 2021 Jun; 68(3):459-468. PubMed ID: 32725827
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Review of advances in the development of laccases for the valorization of lignin to enable the production of lignocellulosic biofuels and bioproducts.
    Leynaud Kieffer Curran LMC; Pham LTM; Sale KL; Simmons BA
    Biotechnol Adv; 2022; 54():107809. PubMed ID: 34333091
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Laccases for biorefinery applications: a critical review on challenges and perspectives.
    Roth S; Spiess AC
    Bioprocess Biosyst Eng; 2015 Dec; 38(12):2285-313. PubMed ID: 26437966
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biodegradation of kraft lignin by a newly isolated anaerobic bacterial strain, Acetoanaerobium sp. WJDL-Y2.
    Duan J; Huo X; Du WJ; Liang JD; Wang DQ; Yang SC
    Lett Appl Microbiol; 2016 Jan; 62(1):55-62. PubMed ID: 26465801
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.