These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 31788134)

  • 21. Kemp elimination catalysts by computational enzyme design.
    Röthlisberger D; Khersonsky O; Wollacott AM; Jiang L; DeChancie J; Betker J; Gallaher JL; Althoff EA; Zanghellini A; Dym O; Albeck S; Houk KN; Tawfik DS; Baker D
    Nature; 2008 May; 453(7192):190-5. PubMed ID: 18354394
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of side chain entropy and mutual information for improving the de novo design of Kemp eliminases KE07 and KE70.
    Bhowmick A; Sharma SC; Honma H; Head-Gordon T
    Phys Chem Chem Phys; 2016 Jul; 18(28):19386-96. PubMed ID: 27374812
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent Advances in Biocatalytic Promiscuity: Hydrolase-Catalyzed Reactions for Nonconventional Transformations.
    López-Iglesias M; Gotor-Fernández V
    Chem Rec; 2015 Aug; 15(4):743-59. PubMed ID: 26147872
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Catalytic and binding poly-reactivities shared by two unrelated proteins: The potential role of promiscuity in enzyme evolution.
    James LC; Tawfik DS
    Protein Sci; 2001 Dec; 10(12):2600-7. PubMed ID: 11714928
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimization of the in-silico-designed kemp eliminase KE70 by computational design and directed evolution.
    Khersonsky O; Röthlisberger D; Wollacott AM; Murphy P; Dym O; Albeck S; Kiss G; Houk KN; Baker D; Tawfik DS
    J Mol Biol; 2011 Apr; 407(3):391-412. PubMed ID: 21277311
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On the magnitude and specificity of medium effects in enzyme-like catalysts for proton transfer.
    Hollfelder F; Kirby AJ; Tawfik DS
    J Org Chem; 2001 Aug; 66(17):5866-74. PubMed ID: 11511264
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Catalytic Effect of Electric Fields on the Kemp Elimination Reactions with Neutral Bases.
    Acosta-Silva C; Bertran J; Branchadell V; Oliva A
    Chemphyschem; 2020 Nov; 21(22):2594-2604. PubMed ID: 32916041
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Origin of the activity drop with the E50D variant of catalytic antibody 34E4 for Kemp elimination.
    Alexandrova AN; Jorgensen WL
    J Phys Chem B; 2009 Jan; 113(2):497-504. PubMed ID: 19132861
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A redox-mediated Kemp eliminase.
    Li A; Wang B; Ilie A; Dubey KD; Bange G; Korendovych IV; Shaik S; Reetz MT
    Nat Commun; 2017 Mar; 8():14876. PubMed ID: 28348375
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Revealing the Origin of the Efficiency of the De Novo Designed Kemp Eliminase HG-3.17 by Comparison with the Former Developed HG-3.
    Świderek K; Tuñón I; Moliner V; Bertran J
    Chemistry; 2017 Jun; 23(31):7582-7589. PubMed ID: 28334464
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The evolution of multiple active site configurations in a designed enzyme.
    Hong NS; Petrović D; Lee R; Gryn'ova G; Purg M; Saunders J; Bauer P; Carr PD; Lin CY; Mabbitt PD; Zhang W; Altamore T; Easton C; Coote ML; Kamerlin SCL; Jackson CJ
    Nat Commun; 2018 Sep; 9(1):3900. PubMed ID: 30254369
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enzyme promiscuity: mechanism and applications.
    Hult K; Berglund P
    Trends Biotechnol; 2007 May; 25(5):231-8. PubMed ID: 17379338
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differential catalytic promiscuity of the alkaline phosphatase superfamily bimetallo core reveals mechanistic features underlying enzyme evolution.
    Sunden F; AlSadhan I; Lyubimov A; Doukov T; Swan J; Herschlag D
    J Biol Chem; 2017 Dec; 292(51):20960-20974. PubMed ID: 29070681
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Promiscuity in the Enzymatic Catalysis of Phosphate and Sulfate Transfer.
    Pabis A; Duarte F; Kamerlin SC
    Biochemistry; 2016 Jun; 55(22):3061-81. PubMed ID: 27187273
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Catalytic mechanism and performance of computationally designed enzymes for Kemp elimination.
    Alexandrova AN; Röthlisberger D; Baker D; Jorgensen WL
    J Am Chem Soc; 2008 Nov; 130(47):15907-15. PubMed ID: 18975945
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Challenges and advances in validating enzyme design proposals: the case of kemp eliminase catalysis.
    Frushicheva MP; Cao J; Warshel A
    Biochemistry; 2011 May; 50(18):3849-58. PubMed ID: 21443179
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Unusual commonality in active site structural features of substrate promiscuous and specialist enzymes.
    Thakur D; Pandit SB
    J Struct Biol; 2022 Mar; 214(1):107835. PubMed ID: 35104611
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Catalytic site flexibility facilitates the substrate and catalytic promiscuity of Vibrio dual lipase/transferase.
    Wang C; Liu C; Zhu X; Peng Q; Ma Q
    Nat Commun; 2023 Aug; 14(1):4795. PubMed ID: 37558668
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Site-Directed Chemical Mutations on Abzymes: Large Rate Accelerations in the Catalysis by Exchanging the Functionalized Small Nonprotein Components.
    Ishikawa F; Shirahashi M; Hayakawa H; Yamaguchi A; Hirokawa T; Tsumuraya T; Fujii I
    ACS Chem Biol; 2016 Oct; 11(10):2803-2811. PubMed ID: 27552288
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interaction of anions with the surface of a coordination cage in aqueous solution probed by their effect on a cage-catalysed Kemp elimination.
    Ludden MD; Taylor CGP; Tipping MB; Train JS; Williams NH; Dorrat JC; Tuck KL; Ward MD
    Chem Sci; 2021 Nov; 12(44):14781-14791. PubMed ID: 34820094
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.