BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 31788198)

  • 1. Rapid loss of an ecosystem engineer:
    Norby RJ; Childs J; Hanson PJ; Warren JM
    Ecol Evol; 2019 Nov; 9(22):12571-12585. PubMed ID: 31788198
    [No Abstract]   [Full Text] [Related]  

  • 2. Shading contributes to
    Norby RJ; Baxter T; Živković T; Weston DJ
    Ecol Evol; 2023 Sep; 13(9):e10542. PubMed ID: 37732286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Climate drivers alter nitrogen availability in surface peat and decouple N
    Petro C; Carrell AA; Wilson RM; Duchesneau K; Noble-Kuchera S; Song T; Iversen CM; Childs J; Schwaner G; Chanton JP; Norby RJ; Hanson PJ; Glass JB; Weston DJ; Kostka JE
    Glob Chang Biol; 2023 Jun; 29(11):3159-3176. PubMed ID: 36999440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Will climate change cause the global peatland to expand or contract? Evidence from the habitat shift pattern of Sphagnum mosses.
    Ma XY; Xu H; Cao ZY; Shu L; Zhu RL
    Glob Chang Biol; 2022 Nov; 28(21):6419-6432. PubMed ID: 35900846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental warming alters the community composition, diversity, and N
    Carrell AA; Kolton M; Glass JB; Pelletier DA; Warren MJ; Kostka JE; Iversen CM; Hanson PJ; Weston DJ
    Glob Chang Biol; 2019 Sep; 25(9):2993-3004. PubMed ID: 31148286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of climate warming on Sphagnum photosynthesis in peatlands depend on peat moisture and species-specific anatomical traits.
    Jassey VEJ; Signarbieux C
    Glob Chang Biol; 2019 Nov; 25(11):3859-3870. PubMed ID: 31502398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep peat warming increases surface methane and carbon dioxide emissions in a black spruce-dominated ombrotrophic bog.
    Gill AL; Giasson MA; Yu R; Finzi AC
    Glob Chang Biol; 2017 Dec; 23(12):5398-5411. PubMed ID: 28675635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Widespread recent ecosystem state shifts in high-latitude peatlands of northeastern Canada and implications for carbon sequestration.
    Magnan G; Sanderson NK; Piilo S; Pratte S; Väliranta M; van Bellen S; Zhang H; Garneau M
    Glob Chang Biol; 2022 Mar; 28(5):1919-1934. PubMed ID: 34882914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Divergent species-specific impacts of whole ecosystem warming and elevated CO
    Warren JM; Jensen AM; Ward EJ; Guha A; Childs J; Wullschleger SD; Hanson PJ
    Glob Chang Biol; 2021 May; 27(9):1820-1835. PubMed ID: 33528056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sphagnum mosses, the impact of disturbances and anthropogenic management actions on their ecological role in CO
    Pacheco-Cancino PA; Carrillo-López RF; Sepulveda-Jauregui A; Somos-Valenzuela MA
    Glob Chang Biol; 2024 Jan; 30(1):e16972. PubMed ID: 37882506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linkages between Sphagnum metabolites and peatland CO
    Sytiuk A; Hamard S; Céréghino R; Dorrepaal E; Geissel H; Küttim M; Lamentowicz M; Tuittila ES; Jassey VEJ
    New Phytol; 2023 Feb; 237(4):1164-1178. PubMed ID: 36336780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contrasting growth responses of dominant peatland plants to warming and vegetation composition.
    Walker TN; Ward SE; Ostle NJ; Bardgett RD
    Oecologia; 2015 May; 178(1):141-51. PubMed ID: 25687830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The response of boreal peatland community composition and NDVI to hydrologic change, warming, and elevated carbon dioxide.
    McPartland MY; Kane ES; Falkowski MJ; Kolka R; Turetsky MR; Palik B; Montgomery RA
    Glob Chang Biol; 2019 Jan; 25(1):93-107. PubMed ID: 30295397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vascular plants promote ancient peatland carbon loss with climate warming.
    Walker TN; Garnett MH; Ward SE; Oakley S; Bardgett RD; Ostle NJ
    Glob Chang Biol; 2016 May; 22(5):1880-9. PubMed ID: 26730448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vascular plants regulate responses of boreal peatland Sphagnum to climate warming and nitrogen addition.
    Le TB; Wu J; Gong Y
    Sci Total Environ; 2022 May; 819():152077. PubMed ID: 34856288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of Warming on Greenhouse Gas Production and Microbial Diversity in Anoxic Peat From a
    Kolton M; Marks A; Wilson RM; Chanton JP; Kostka JE
    Front Microbiol; 2019; 10():870. PubMed ID: 31105668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RAPID CARBON RESPONSE OF PEATLANDS TO CLIMATE CHANGE.
    Bridgham SD; Pastor J; Dewey B; Weltzin JF; Updegraff K
    Ecology; 2008 Nov; 89(11):3041-3048. PubMed ID: 31766807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Climate change drives a shift in peatland ecosystem plant community: implications for ecosystem function and stability.
    Dieleman CM; Branfireun BA; McLaughlin JW; Lindo Z
    Glob Chang Biol; 2015 Jan; 21(1):388-95. PubMed ID: 24957384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Above- and belowground linkages in Sphagnum peatland: climate warming affects plant-microbial interactions.
    Jassey VE; Chiapusio G; Binet P; Buttler A; Laggoun-Défarge F; Delarue F; Bernard N; Mitchell EA; Toussaint ML; Francez AJ; Gilbert D
    Glob Chang Biol; 2013 Mar; 19(3):811-23. PubMed ID: 23504838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Warming and elevated CO
    Ofiti NOE; Solly EF; Hanson PJ; Malhotra A; Wiesenberg GLB; Schmidt MWI
    Glob Chang Biol; 2022 Feb; 28(3):883-898. PubMed ID: 34689380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.