These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 31788616)

  • 1. Nanostructured Hybrid-Material Transparent Surface with Antireflection Properties and a Facile Fabrication Process.
    Rombaut J; Fernandez M; Mazumder P; Pruneri V
    ACS Omega; 2019 Nov; 4(22):19840-19846. PubMed ID: 31788616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomimetic Moth-eye Nanofabrication: Enhanced Antireflection with Superior Self-cleaning Characteristic.
    Sun J; Wang X; Wu J; Jiang C; Shen J; Cooper MA; Zheng X; Liu Y; Yang Z; Wu D
    Sci Rep; 2018 Apr; 8(1):5438. PubMed ID: 29615712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanostructured as-deposited indium tin oxide thin films for broadband antireflection and light trapping.
    Khan I; Bauch M; Dimopoulos T; Dostalek J
    Nanotechnology; 2017 Aug; 28(32):325201. PubMed ID: 28617246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal moth eye nanostructure array on transparent glass towards broadband antireflection.
    Ji S; Song K; Nguyen TB; Kim N; Lim H
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):10731-7. PubMed ID: 24116953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization and continuous fabrication of moth-eye nanostructure array on flexible polyethylene terephthalate substrate towards broadband antireflection.
    Zhang C; Yi P; Peng L; Ni J
    Appl Opt; 2017 Apr; 56(10):2901-2907. PubMed ID: 28375259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scalable Production of Mechanically Robust Antireflection Film for Omnidirectional Enhanced Flexible Thin Film Solar Cells.
    Wang M; Ma P; Yin M; Lu L; Lin Y; Chen X; Jia W; Cao X; Chang P; Li D
    Adv Sci (Weinh); 2017 Sep; 4(9):1700079. PubMed ID: 28932667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical Study on Broadband Antireflection of Moth-Eye Nanostructured Polymer Film with Flexible Polyethylene Terephthalate Substrate.
    Lan J; Yang Y; Hu S
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectrally selective antireflection of nanoimprint lithography-formed 3D spherical structures on film coated with a silver layer.
    Chiou AH; Chang CW; Ting CJ
    Sci Rep; 2022 Nov; 12(1):19505. PubMed ID: 36376439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Durable Broadband and Omnidirectional Ultra-antireflective Surfaces.
    Li Z; Lin J; Liu Z; Feng S; Liu Y; Wang C; Liu Y; Yang S
    ACS Appl Mater Interfaces; 2018 Nov; 10(46):40180-40188. PubMed ID: 30378430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. All-Nanoparticle Monolayer Broadband Antireflective and Self-Cleaning Transparent Glass Coatings.
    Gruzd A; Tokarev A; Tokarev I; Kuksenkov D; Minko S
    ACS Appl Mater Interfaces; 2021 Feb; 13(5):6767-6777. PubMed ID: 33523621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inverse Moth Eye Nanostructures with Enhanced Antireflection and Contamination Resistance.
    Diao Z; Hirte J; Chen W; Spatz JP
    ACS Omega; 2017 Aug; 2(8):5012-5018. PubMed ID: 31457778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved antireflection properties of moth eye mimicking nanopillars on transparent glass: flat antireflection and color tuning.
    Ji S; Park J; Lim H
    Nanoscale; 2012 Aug; 4(15):4603-10. PubMed ID: 22706661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superomniphobic, transparent, and antireflection surfaces based on hierarchical nanostructures.
    Mazumder P; Jiang Y; Baker D; Carrilero A; Tulli D; Infante D; Hunt AT; Pruneri V
    Nano Lett; 2014 Aug; 14(8):4677-81. PubMed ID: 24988148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antireflective Transparent Oleophobic Surfaces by Noninteracting Cavities.
    Rombaut J; Maniyara RA; Bellman RA; Acquard DF; Baca AS; Osmond J; Senaratne W; Quesada MA; Baker D; Mazumder P; Pruneri V
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):43230-43235. PubMed ID: 30444107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrathin transparent conductive polyimide foil embedding silver nanowires.
    Ghosh DS; Chen TL; Mkhitaryan V; Pruneri V
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):20943-8. PubMed ID: 25391270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexible Self-Cleaning Broadband Antireflective Film Inspired by the Transparent Cicada Wings.
    Han Z; Wang Z; Li B; Feng X; Jiao Z; Zhang J; Zhao J; Niu S; Ren L
    ACS Appl Mater Interfaces; 2019 May; 11(18):17019-17027. PubMed ID: 30993966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomimetic nanostructured antireflection coating and its application on crystalline silicon solar cells.
    Chen JY; Chang WL; Huang CK; Sun KW
    Opt Express; 2011 Jul; 19(15):14411-9. PubMed ID: 21934803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanostructured indium-tin-oxide films fabricated by all-solution processing for functional transparent electrodes.
    Lee SH; Ha NY
    Opt Express; 2011 Oct; 19(22):21803-8. PubMed ID: 22109031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-imprint moth-eye anti-reflective and self-cleaning film with enhanced resistance.
    Navarro-Baena I; Jacobo-Martín A; Hernández JJ; Castro Smirnov JR; Viela F; Monclús MA; Osorio MR; Molina-Aldareguia JM; Rodríguez I
    Nanoscale; 2018 Aug; 10(33):15496-15504. PubMed ID: 29855639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and Fabrication of Wafer-Level Microlens Array with Moth-Eye Antireflective Nanostructures.
    Xie S; Wan X; Yang B; Zhang W; Wei X; Zhuang S
    Nanomaterials (Basel); 2019 May; 9(5):. PubMed ID: 31096627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.