BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 31789025)

  • 1. A Quest for Structurally Uniform Graphene Nanoribbons: Synthesis, Properties, and Applications.
    Yano Y; Mitoma N; Ito H; Itami K
    J Org Chem; 2020 Jan; 85(1):4-33. PubMed ID: 31789025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-Surface Synthesis and Characterization of 9-Atom Wide Armchair Graphene Nanoribbons.
    Talirz L; Söde H; Dumslaff T; Wang S; Sanchez-Valencia JR; Liu J; Shinde P; Pignedoli CA; Liang L; Meunier V; Plumb NC; Shi M; Feng X; Narita A; Müllen K; Fasel R; Ruffieux P
    ACS Nano; 2017 Feb; 11(2):1380-1388. PubMed ID: 28129507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A guide to the design of electronic properties of graphene nanoribbons.
    Yazyev OV
    Acc Chem Res; 2013 Oct; 46(10):2319-28. PubMed ID: 23282074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomically precise graphene nanoribbons: interplay of structural and electronic properties.
    Houtsma RSK; de la Rie J; Stöhr M
    Chem Soc Rev; 2021 Jun; 50(11):6541-6568. PubMed ID: 34100034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Research Progress on Thermal Conductivity of Graphdiyne Nanoribbons and its Defects: A Review.
    Tian W; Cheng C; Wang C; Li W
    Recent Pat Nanotechnol; 2020; 14(4):294-306. PubMed ID: 32525786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site- and alignment-controlled growth of graphene nanoribbons from nickel nanobars.
    Kato T; Hatakeyama R
    Nat Nanotechnol; 2012 Oct; 7(10):651-6. PubMed ID: 22961304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laterally extended atomically precise graphene nanoribbons with improved electrical conductivity for efficient gas sensing.
    Mehdi Pour M; Lashkov A; Radocea A; Liu X; Sun T; Lipatov A; Korlacki RA; Shekhirev M; Aluru NR; Lyding JW; Sysoev V; Sinitskii A
    Nat Commun; 2017 Oct; 8(1):820. PubMed ID: 29018185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic edge states and coherent manipulation of graphene nanoribbons.
    Slota M; Keerthi A; Myers WK; Tretyakov E; Baumgarten M; Ardavan A; Sadeghi H; Lambert CJ; Narita A; Müllen K; Bogani L
    Nature; 2018 May; 557(7707):691-695. PubMed ID: 29849157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrically Induced Dirac Fermions in Graphene Nanoribbons.
    Pizzochero M; Tepliakov NV; Mostofi AA; Kaxiras E
    Nano Lett; 2021 Nov; 21(21):9332-9338. PubMed ID: 34714095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High vacuum synthesis and ambient stability of bottom-up graphene nanoribbons.
    Fairbrother A; Sanchez-Valencia JR; Lauber B; Shorubalko I; Ruffieux P; Hintermann T; Fasel R
    Nanoscale; 2017 Feb; 9(8):2785-2792. PubMed ID: 28155928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic Tailoring of Graphene Nanostructures with Zigzag-Edged Topologies: Progress and Perspectives.
    Liu J; Feng X
    Angew Chem Int Ed Engl; 2020 Dec; 59(52):23386-23401. PubMed ID: 32720441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bottom-up synthesis of liquid-phase-processable graphene nanoribbons with near-infrared absorption.
    Narita A; Verzhbitskiy IA; Frederickx W; Mali KS; Jensen SA; Hansen MR; Bonn M; De Feyter S; Casiraghi C; Feng X; Müllen K
    ACS Nano; 2014 Nov; 8(11):11622-30. PubMed ID: 25338208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic structure of atomically precise graphene nanoribbons.
    Ruffieux P; Cai J; Plumb NC; Patthey L; Prezzi D; Ferretti A; Molinari E; Feng X; Müllen K; Pignedoli CA; Fasel R
    ACS Nano; 2012 Aug; 6(8):6930-5. PubMed ID: 22853456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wafer-scale fabrication and growth dynamics of suspended graphene nanoribbon arrays.
    Suzuki H; Kaneko T; Shibuta Y; Ohno M; Maekawa Y; Kato T
    Nat Commun; 2016 Jun; 7():11797. PubMed ID: 27250877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contacting individual graphene nanoribbons using carbon nanotube electrodes.
    Zhang J; Qian L; Barin GB; Daaoub AHS; Chen P; Müllen K; Sangtarash S; Ruffieux P; Fasel R; Sadeghi H; Zhang J; Calame M; Perrin ML
    Nat Electron; 2023; 6(8):572-581. PubMed ID: 37636241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modified Engineering of Graphene Nanoribbons Prepared via On-Surface Synthesis.
    Zhou X; Yu G
    Adv Mater; 2020 Feb; 32(6):e1905957. PubMed ID: 31830353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deriving MoS
    Yang C; Wang B; Xie Y; Zheng Y; Jin C
    Nanotechnology; 2019 Jun; 30(25):255602. PubMed ID: 30802894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hierarchical graphene nanoribbon assemblies feature unique electronic and mechanical properties.
    Xu Z; Buehler MJ
    Nanotechnology; 2009 Sep; 20(37):375704. PubMed ID: 19706941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On-surface synthesis of graphene nanoribbons with zigzag edge topology.
    Ruffieux P; Wang S; Yang B; Sánchez-Sánchez C; Liu J; Dienel T; Talirz L; Shinde P; Pignedoli CA; Passerone D; Dumslaff T; Feng X; Müllen K; Fasel R
    Nature; 2016 Mar; 531(7595):489-92. PubMed ID: 27008967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.