BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 31789033)

  • 21. Saponin-enriched extracts from body wall and Cuvierian tubule of Holothuria leucospilota reduce fat accumulation and suppress lipogenesis in Caenorhabditis elegans.
    Chumphoochai K; Chalorak P; Suphamungmee W; Sobhon P; Meemon K
    J Sci Food Agric; 2019 Jun; 99(8):4158-4166. PubMed ID: 30767223
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The
    Hu Q; D'Amora DR; MacNeil LT; Walhout AJM; Kubiseski TJ
    G3 (Bethesda); 2018 Dec; 8(12):3857-3863. PubMed ID: 30297383
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantitative Assessment of Fat Levels in
    Fouad AD; Pu SH; Teng S; Mark JR; Fu M; Zhang K; Huang J; Raizen DM; Fang-Yen C
    G3 (Bethesda); 2017 Jun; 7(6):1811-1818. PubMed ID: 28404661
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CCAAT/enhancer-binding protein CEBP-2 controls fat consumption and fatty acid desaturation in Caenorhabditis elegans.
    Xu XY; Hu JP; Wu MM; Wang LS; Fang NY
    Biochem Biophys Res Commun; 2015 Dec 4-11; 468(1-2):312-8. PubMed ID: 26505800
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The lin-4 gene controls fat accumulation and longevity in Caenorhabditis elegans.
    Zhu C; Ji CB; Zhang CM; Gao CL; Zhu JG; Qin DN; Kou CZ; Zhu GZ; Shi CM; Guo XR
    Int J Mol Sci; 2010; 11(12):4814-25. PubMed ID: 21614175
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of conjugated linoleic acid (CLA) on fat accumulation, activity, and proteomics analysis in Caenorhabditis elegans.
    Shen P; Kershaw JC; Yue Y; Wang O; Kim KH; McClements DJ; Park Y
    Food Chem; 2018 May; 249():193-201. PubMed ID: 29407924
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The influence of bacterial diet on fat storage in C. elegans.
    Brooks KK; Liang B; Watts JL
    PLoS One; 2009 Oct; 4(10):e7545. PubMed ID: 19844570
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lipidomic and proteomic analysis of Caenorhabditis elegans lipid droplets and identification of ACS-4 as a lipid droplet-associated protein.
    Vrablik TL; Petyuk VA; Larson EM; Smith RD; Watts JL
    Biochim Biophys Acta; 2015 Oct; 1851(10):1337-45. PubMed ID: 26121959
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Anti-fat effect and mechanism of polysaccharide-enriched extract from Cyclocarya paliurus (Batal.) Iljinskaja in Caenorhabditis elegans.
    Lin C; Lin Y; Meng T; Lian J; Liang Y; Kuang Y; Cao Y; Chen Y
    Food Funct; 2020 Jun; 11(6):5320-5332. PubMed ID: 32458846
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integrated Analysis of Transcriptome and Metabolome Provides Insight into
    Liu L; Kong Q; Xiang Z; Kuang X; Wang H; Zhou L; Feng S; Chen T; Ding C
    Int J Mol Sci; 2023 Jul; 24(14):. PubMed ID: 37511379
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nuclear hormone receptor NHR-49 controls fat consumption and fatty acid composition in C. elegans.
    Van Gilst MR; Hadjivassiliou H; Jolly A; Yamamoto KR
    PLoS Biol; 2005 Feb; 3(2):e53. PubMed ID: 15719061
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novel functions of lipid-binding protein 5 in Caenorhabditis elegans fat metabolism.
    Xu M; Joo HJ; Paik YK
    J Biol Chem; 2011 Aug; 286(32):28111-8. PubMed ID: 21697096
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exposure to 6-PPD quinone enhances lipid accumulation through activating metabolic sensors of SBP-1 and MDT-15 in Caenorhabditis elegans.
    Wang Y; Hua X; Wang D
    Environ Pollut; 2023 Sep; 333():121937. PubMed ID: 37307863
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Leucosceptroid B from glandular trichomes of Leucosceptrum canum reduces fat accumulation in Caenorhabditis elegans through suppressing unsaturated fatty acid biosynthesis.
    Ling Y; Teng LL; Hua J; Li DS; Luo SH; Liu YC; Liu Y; Li SH
    Chin J Nat Med; 2019 Dec; 17(12):892-899. PubMed ID: 31882042
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Litchi flower essential oil balanced lipid metabolism through the regulation of DAF-2/IIS, MDT-15/SBP-1, and MDT-15/NHR-49 pathway.
    Chen Y; Qin Q; Luo J; Dong Y; Lin C; Chen H; Cao Y; Chen Y; Su Z
    Front Nutr; 2022; 9():934518. PubMed ID: 36337637
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Betulinic acid counteracts the lipid accumulation in Caenorhabditis elegans by modulation of nhr-49 expression.
    Savova MS; Todorova MN; Apostolov AG; Yahubyan GT; Georgiev MI
    Biomed Pharmacother; 2022 Dec; 156():113862. PubMed ID: 36242845
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ilex paraguariensis modulates fat metabolism in Caenorhabditis elegans through purinergic system (ADOR-1) and nuclear hormone receptor (NHR-49) pathways.
    Machado ML; Arantes LP; Gubert P; Zamberlan DC; da Silva TC; da Silveira TL; Boligon A; Soares FAA
    PLoS One; 2018; 13(9):e0204023. PubMed ID: 30252861
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lipid-mediated regulation of SKN-1/Nrf in response to germ cell absence.
    Steinbaugh MJ; Narasimhan SD; Robida-Stubbs S; Moronetti Mazzeo LE; Dreyfuss JM; Hourihan JM; Raghavan P; Operaña TN; Esmaillie R; Blackwell TK
    Elife; 2015 Aug; 4():. PubMed ID: 26196144
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lipid metabolic sensors of MDT-15 and SBP-1 regulated the response to simulated microgravity in the intestine of Caenorhabditis elegans.
    Liu H; Li D; Zhang R; Sun L; Wang D
    Biochem Biophys Res Commun; 2020 Jul; 528(1):28-34. PubMed ID: 32448509
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SREBP and MDT-15 protect C. elegans from glucose-induced accelerated aging by preventing accumulation of saturated fat.
    Lee D; Jeong DE; Son HG; Yamaoka Y; Kim H; Seo K; Khan AA; Roh TY; Moon DW; Lee Y; Lee SJ
    Genes Dev; 2015 Dec; 29(23):2490-503. PubMed ID: 26637528
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.