BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

489 related articles for article (PubMed ID: 31789134)

  • 1. Nanocarrier Mediated siRNA Delivery Targeting Stem Cell Differentiation.
    Fernandes F; Kotharkar P; Chakravorty A; Kowshik M; Talukdar I
    Curr Stem Cell Res Ther; 2020; 15(2):155-172. PubMed ID: 31789134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review of nanocarriers for the delivery of small interfering RNA.
    Kesharwani P; Gajbhiye V; Jain NK
    Biomaterials; 2012 Oct; 33(29):7138-50. PubMed ID: 22796160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rigid nanoparticle-based delivery of anti-cancer siRNA: challenges and opportunities.
    Wang Z; Liu G; Zheng H; Chen X
    Biotechnol Adv; 2014; 32(4):831-43. PubMed ID: 24013011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanocarriers for delivery of siRNA and co-delivery of siRNA and other therapeutic agents.
    Zhao J; Feng SS
    Nanomedicine (Lond); 2015 Jul; 10(14):2199-228. PubMed ID: 26214357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipid-based nanoparticles for siRNA delivery in cancer therapy: paradigms and challenges.
    Gomes-da-Silva LC; Fonseca NA; Moura V; Pedroso de Lima MC; Simões S; Moreira JN
    Acc Chem Res; 2012 Jul; 45(7):1163-71. PubMed ID: 22568781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid-based Nanocarriers for siRNA Delivery: Challenges, Strategies and the Lessons Learned from the DODAX: MO Liposomal System.
    Oliveira ACN; Fernandes J; Gonçalves A; Gomes AC; Oliveira MECDR
    Curr Drug Targets; 2019; 20(1):29-50. PubMed ID: 29968536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stimuli-responsive hybrid nanocarriers developed by controllable integration of hyperbranched PEI with mesoporous silica nanoparticles for sustained intracellular siRNA delivery.
    Prabhakar N; Zhang J; Desai D; Casals E; Gulin-Sarfraz T; Näreoja T; Westermarck J; Rosenholm JM
    Int J Nanomedicine; 2016; 11():6591-6608. PubMed ID: 27994460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell-free synthesis of connexin 43-integrated exosome-mimetic nanoparticles for siRNA delivery.
    Lu M; Zhao X; Xing H; Liu H; Lang L; Yang T; Xun Z; Wang D; Ding P
    Acta Biomater; 2019 Sep; 96():517-536. PubMed ID: 31284098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comprehensive update of siRNA delivery design strategies for targeted and effective gene silencing in gene therapy and other applications.
    Abosalha AK; Ahmad W; Boyajian J; Islam P; Ghebretatios M; Schaly S; Thareja R; Arora K; Prakash S
    Expert Opin Drug Discov; 2023 Feb; 18(2):149-161. PubMed ID: 36514963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoparticle-siRNA: A potential cancer therapy?
    Young SW; Stenzel M; Yang JL
    Crit Rev Oncol Hematol; 2016 Feb; 98():159-69. PubMed ID: 26597018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strategies for in vivo delivery of siRNAs: recent progress.
    Higuchi Y; Kawakami S; Hashida M
    BioDrugs; 2010 Jun; 24(3):195-205. PubMed ID: 20462284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium-siRNA Nanocomplexes Optimized by Bovine Serum Albumin Coating Can Achieve Convenient and Efficient siRNA Delivery for Periodontitis Therapy.
    Wang Y; Song W; Cui Y; Zhang Y; Mei S; Wang Q
    Int J Nanomedicine; 2020; 15():9241-9253. PubMed ID: 33262586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroxyapatite nanoparticles modified by branched polyethylenimine are effective non-viral vectors for siRNA transfection of hepatoma cells in vitro.
    Xu XL; Yang HY; Ou B; Lin SD; Wu H; He W; Jiang QC; Luo BM; Li GP
    Int J Oncol; 2015 May; 46(5):2138-42. PubMed ID: 25760143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. siRNA delivery using nanocarriers - an efficient tool for gene silencing.
    Khurana B; Goyal AK; Budhiraja A; Arora D; Vyas SP
    Curr Gene Ther; 2010 Apr; 10(2):139-55. PubMed ID: 20353386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polycation-based nanoparticle delivery for improved RNA interference therapeutics.
    Howard KA; Kjems J
    Expert Opin Biol Ther; 2007 Dec; 7(12):1811-22. PubMed ID: 18034647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Delivering siRNA with Dendrimers: In Vivo Applications.
    Leiro V; Santos SD; Pego AP
    Curr Gene Ther; 2017; 17(2):105-119. PubMed ID: 28494741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AIE Featured Inorganic-Organic Core@Shell Nanoparticles for High-Efficiency siRNA Delivery and Real-Time Monitoring.
    He X; Yin F; Wang D; Xiong LH; Kwok RTK; Gao PF; Zhao Z; Lam JWY; Yong KT; Li Z; Tang BZ
    Nano Lett; 2019 Apr; 19(4):2272-2279. PubMed ID: 30829039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA interference-based therapy and its delivery systems.
    Chen X; Mangala LS; Rodriguez-Aguayo C; Kong X; Lopez-Berestein G; Sood AK
    Cancer Metastasis Rev; 2018 Mar; 37(1):107-124. PubMed ID: 29243000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeted Delivery of siRNA Therapeutics using Ligand Mediated Biodegradable Polymeric Nanocarriers.
    Cho KS; Hong SJ; Ahn MH; Pal S; Choung PH; Sangshetti J; Arote RB
    Curr Pharm Des; 2018; 24(16):1788-1800. PubMed ID: 29962332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanocarrier mediated delivery of siRNA/miRNA in combination with chemotherapeutic agents for cancer therapy: current progress and advances.
    Gandhi NS; Tekade RK; Chougule MB
    J Control Release; 2014 Nov; 194():238-56. PubMed ID: 25204288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.