These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Regulation of heat shock proteins, Hsp70 and Hsp64, in heat-shocked Malpighian tubules of Drosophila melanogaster larvae. Lakhotia SC; Srivastava P; Prasanth KV Cell Stress Chaperones; 2002 Oct; 7(4):347-56. PubMed ID: 12653479 [TBL] [Abstract][Full Text] [Related]
3. Effect of cold exposure on survival and stress protein expression of Drosophila melanogaster at different development stages. Tsutsayeva AA; Sevryukova LG Cryo Letters; 2001; 22(3):145-50. PubMed ID: 11788853 [TBL] [Abstract][Full Text] [Related]
4. [Modification of the teratogenic effect of griseofulvin by heat shock in Drosophila melanogaster]. Isaenko OA; Shvartsman PIa Genetika; 1995 Apr; 31(4):583-5. PubMed ID: 7607445 [TBL] [Abstract][Full Text] [Related]
5. Expression of mdr49 and mdr65 multidrug resistance genes in larval tissues of Drosophila melanogaster under normal and stress conditions. Tapadia MG; Lakhotia SC Cell Stress Chaperones; 2005; 10(1):7-11. PubMed ID: 15832942 [TBL] [Abstract][Full Text] [Related]
6. Thermoprotection of synaptic transmission in a Drosophila heat shock factor mutant is accompanied by increased expression of Hsp83 and DnaJ-1. Neal SJ; Karunanithi S; Best A; So AK; Tanguay RM; Atwood HL; Westwood JT Physiol Genomics; 2006 May; 25(3):493-501. PubMed ID: 16595740 [TBL] [Abstract][Full Text] [Related]
7. Heat shock protein 70 from a thermotolerant Diptera species provides higher thermoresistance to Drosophila larvae than correspondent endogenous gene. Shilova VY; Zatsepina OG; Garbuz DG; Funikov SY; Zelentsova ES; Schostak NG; Kulikov AM; Evgen'ev MB Insect Mol Biol; 2018 Feb; 27(1):61-72. PubMed ID: 28796386 [TBL] [Abstract][Full Text] [Related]
8. Growth inhibition and differences in protein profiles in azadirachtin-treated Drosophila melanogaster larvae. Wang H; Lai D; Yuan M; Xu H Electrophoresis; 2014 Apr; 35(8):1122-9. PubMed ID: 24458307 [TBL] [Abstract][Full Text] [Related]
9. Olfactory conditioning in the third instar larvae of Drosophila melanogaster using heat shock reinforcement. Khurana S; Robinson BG; Wang Z; Shropshire WC; Zhong AC; Garcia LE; Corpuz J; Chow J; Hatch MM; Precise EF; Cady A; Godinez RM; Pulpanyawong T; Nguyen AT; Li WK; Seiter M; Jahanian K; Sun JC; Shah R; Rajani S; Chen WY; Ray S; Ryazanova NV; Wakou D; Prabhu RK; Atkinson NS Behav Genet; 2012 Jan; 42(1):151-61. PubMed ID: 21833772 [TBL] [Abstract][Full Text] [Related]
10. Reply to commentary on "Is pre-heat necessary for the measurement of 8-oxo-7,8-dihydroguanosine and 8-oxo-7,8-dihydro-2'-deoxyguanosine in urine samples". Zou Y; Ma X; Yu S; Qiu L J Clin Lab Anal; 2023 Mar; 37(6):e24873. PubMed ID: 37032429 [No Abstract] [Full Text] [Related]
11. Cellular localization of HSP23 during Drosophila development and following subsequent heat shock. Arrigo AP Dev Biol; 1987 Jul; 122(1):39-48. PubMed ID: 3109982 [TBL] [Abstract][Full Text] [Related]
12. Hazardous effect of organophosphate compound, dichlorvos in transgenic Drosophila melanogaster (hsp70-lacZ): induction of hsp70, anti-oxidant enzymes and inhibition of acetylcholinesterase. Gupta SC; Siddique HR; Saxena DK; Chowdhuri DK Biochim Biophys Acta; 2005 Aug; 1725(1):81-92. PubMed ID: 16023296 [TBL] [Abstract][Full Text] [Related]
13. Sensitivity differences displayed by Drosophila melanogaster larvae of different ages to the toxic effects of growth on media containing aflatoxin B1. Chinnici JP; Erlanger L; Charnock M; Jones M; Stein J Chem Biol Interact; 1979 Mar; 24(3):373-80. PubMed ID: 106976 [TBL] [Abstract][Full Text] [Related]
14. Short-term hardening effects on survival of acute and chronic cold exposure by Drosophila melanogaster larvae. Rajamohan A; Sinclair BJ J Insect Physiol; 2008 Apr; 54(4):708-18. PubMed ID: 18342328 [TBL] [Abstract][Full Text] [Related]
15. Assessing the genotoxic effects of two lipid peroxidation products (4-oxo-2-nonenal and 4-hydroxy-hexenal) in haemocytes and midgut cells of Drosophila melanogaster larvae. Demir E; Marcos R Food Chem Toxicol; 2017 Jul; 105():1-7. PubMed ID: 28343031 [TBL] [Abstract][Full Text] [Related]
16. Study of the changes in life cycle parameters of Drosophila melanogaster exposed to fluorinated insecticide, cryolite. Podder S; Roy S Toxicol Ind Health; 2015 Dec; 31(12):1341-7. PubMed ID: 23847017 [TBL] [Abstract][Full Text] [Related]
17. Adverse effect of organophosphate compounds, dichlorvos and chlorpyrifos in the reproductive tissues of transgenic Drosophila melanogaster: 70kDa heat shock protein as a marker of cellular damage. Gupta SC; Siddique HR; Mathur N; Mishra RK; Mitra K; Saxena DK; Chowdhuri DK Toxicology; 2007 Aug; 238(1):1-14. PubMed ID: 17618723 [TBL] [Abstract][Full Text] [Related]
18. Comparative toxic potential of market formulation of two organophosphate pesticides in transgenic Drosophila melanogaster (hsp70-lacZ). Gupta SC; Siddique HR; Saxena DK; Chowdhuri DK Cell Biol Toxicol; 2005; 21(3-4):149-62. PubMed ID: 16328894 [TBL] [Abstract][Full Text] [Related]
19. [Consequences of exposure to extreme conditions in somatic cells of Drosophila melanogaster under conditions of disturbed synthesis of heat shock proteins]. Kutskova IU; Mamon LA Genetika; 1996 Oct; 32(10):1406-16. PubMed ID: 9091414 [TBL] [Abstract][Full Text] [Related]
20. Silver nanoparticle-induced developmental inhibition of Drosophila melanogaster accompanies disruption of genetic material of larval neural stem cells and non-neuronal cells. Basak AK; Chatterjee T; Chakravarty A; Ghosh SK Environ Monit Assess; 2019 Jul; 191(8):497. PubMed ID: 31312907 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]