BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 31789320)

  • 1. High-Throughput Total Internal Reflection Fluorescence and Direct Stochastic Optical Reconstruction Microscopy Using a Photonic Chip.
    Coucheron DA; Helle ØI; Øie CI; Tinguely JC; Ahluwalia BS
    J Vis Exp; 2019 Nov; (153):. PubMed ID: 31789320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence fluctuation-based super-resolution microscopy using multimodal waveguided illumination.
    Opstad IS; Hansen DH; Acuña S; Ströhl F; Priyadarshi A; Tinguely JC; Dullo FT; Dalmo RA; Seternes T; Ahluwalia BS; Agarwal K
    Opt Express; 2021 Jul; 29(15):23368-23380. PubMed ID: 34614603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoscopy on-a-chip: super-resolution imaging on the millimeter scale.
    Helle ØI; Coucheron DA; Tinguely JC; Øie CI; Ahluwalia BS
    Opt Express; 2019 Mar; 27(5):6700-6710. PubMed ID: 30876250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large field-of-view nanometer-sectioning microscopy by using metal-induced energy transfer and biexponential lifetime analysis.
    Hwang W; Seo J; Kim D; Lee CJ; Choi IH; Yoo KH; Kim DY
    Commun Biol; 2021 Jan; 4(1):91. PubMed ID: 33469155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chip-based wide field-of-view total internal reflection fluorescence microscopy.
    Fan Z; Kuai Y; Tang X; Zhang Y; Zhang D
    Opt Lett; 2022 Sep; 47(17):4303-4306. PubMed ID: 36048639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chip-based multimodal super-resolution microscopy for histological investigations of cryopreserved tissue sections.
    Villegas-Hernández LE; Dubey V; Nystad M; Tinguely JC; Coucheron DA; Dullo FT; Priyadarshi A; Acuña S; Ahmad A; Mateos JM; Barmettler G; Ziegler U; Birgisdottir ÅB; Hovd AK; Fenton KA; Acharya G; Agarwal K; Ahluwalia BS
    Light Sci Appl; 2022 Feb; 11(1):43. PubMed ID: 35210400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in super-resolution fluorescence imaging and its applications in biology.
    Han R; Li Z; Fan Y; Jiang Y
    J Genet Genomics; 2013 Dec; 40(12):583-95. PubMed ID: 24377865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep learning enables cross-modality super-resolution in fluorescence microscopy.
    Wang H; Rivenson Y; Jin Y; Wei Z; Gao R; Günaydın H; Bentolila LA; Kural C; Ozcan A
    Nat Methods; 2019 Jan; 16(1):103-110. PubMed ID: 30559434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Waveguide-based total internal reflection fluorescence microscope enabling cellular imaging under cryogenic conditions.
    Li Q; Hulleman CN; Moerland RJ; Mailvaganam E; Ganapathy S; Brinks D; Stallinga S; Rieger B
    Opt Express; 2021 Oct; 29(21):34097-34108. PubMed ID: 34809207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extended resolution wide-field optical imaging: objective-launched standing-wave total internal reflection fluorescence microscopy.
    Chung E; Kim D; So PT
    Opt Lett; 2006 Apr; 31(7):945-7. PubMed ID: 16599220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-modal chip-based fluorescence and quantitative phase microscopy for studying inflammation in macrophages.
    Dubey V; Ahmad A; Singh R; Wolfson DL; Basnet P; Acharya G; Mehta DS; Ahluwalia BS
    Opt Express; 2018 Aug; 26(16):19864-19876. PubMed ID: 30119307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional total-internal reflection fluorescence nanoscopy with nanometric axial resolution by photometric localization of single molecules.
    Szalai AM; Siarry B; Lukin J; Williamson DJ; Unsain N; Cáceres A; Pilo-Pais M; Acuna G; Refojo D; Owen DM; Simoncelli S; Stefani FD
    Nat Commun; 2021 Jan; 12(1):517. PubMed ID: 33483489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. easySTORM: a robust, lower-cost approach to localisation and TIRF microscopy.
    Kwakwa K; Savell A; Davies T; Munro I; Parrinello S; Purbhoo MA; Dunsby C; Neil MA; French PM
    J Biophotonics; 2016 Sep; 9(9):948-57. PubMed ID: 27592533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lensless fluorescent microscopy on a chip.
    Coskun AF; Su TW; Sencan I; Ozcan A
    J Vis Exp; 2011 Aug; (54):. PubMed ID: 21876522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-dimensional standing wave total internal reflection fluorescence microscopy: superresolution imaging of single molecular and biological specimens.
    Chung E; Kim D; Cui Y; Kim YH; So PT
    Biophys J; 2007 Sep; 93(5):1747-57. PubMed ID: 17483188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-throughput and uniform large field-of-view multichannel fluorescence microscopy with super-thin dichroism for a dPCR gene chip.
    Otuboah FY; Zheng J; Chen C; Wang Z; Wan X; Sun L
    Appl Opt; 2020 Dec; 59(34):10768-10776. PubMed ID: 33361897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radiative decay engineering 8: Coupled emission microscopy for lens-free high-throughput fluorescence detection.
    Zhu L; Badugu R; Zhang D; Wang R; Descrovi E; Lakowicz JR
    Anal Biochem; 2017 Aug; 531():20-36. PubMed ID: 28527910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photonic-chip assisted correlative light and electron microscopy.
    Tinguely JC; Steyer AM; Øie CI; Helle ØI; Dullo FT; Olsen R; McCourt P; Schwab Y; Ahluwalia BS
    Commun Biol; 2020 Dec; 3(1):739. PubMed ID: 33288833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Super-resolution imaging with Pontamine Fast Scarlet 4BS enables direct visualization of cellulose orientation and cell connection architecture in onion epidermis cells.
    Liesche J; Ziomkiewicz I; Schulz A
    BMC Plant Biol; 2013 Dec; 13():226. PubMed ID: 24373117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alignment and calibration of total internal reflection fluorescence microscopy systems.
    Toomre D
    Cold Spring Harb Protoc; 2012 Apr; 2012(4):504-9. PubMed ID: 22474669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.