These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 31789455)

  • 1. A deep learning approach to conflating heterogeneous geospatial data for corn yield estimation: A case study of the US Corn Belt at the county level.
    Jiang H; Hu H; Zhong R; Xu J; Xu J; Huang J; Wang S; Ying Y; Lin T
    Glob Chang Biol; 2020 Mar; 26(3):1754-1766. PubMed ID: 31789455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. County-Level Soybean Yield Prediction Using Deep CNN-LSTM Model.
    Sun J; Di L; Sun Z; Shen Y; Lai Z
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31600963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrating environmental and satellite data to estimate county-level cotton yield in Xinjiang Province.
    Lang P; Zhang L; Huang C; Chen J; Kang X; Zhang Z; Tong Q
    Front Plant Sci; 2022; 13():1048479. PubMed ID: 36743573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using spatio-temporal fusion of Landsat-8 and MODIS data to derive phenology, biomass and yield estimates for corn and soybean.
    Liao C; Wang J; Dong T; Shang J; Liu J; Song Y
    Sci Total Environ; 2019 Feb; 650(Pt 2):1707-1721. PubMed ID: 30273730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detect and attribute the extreme maize yield losses based on spatio-temporal deep learning.
    Zhong R; Zhu Y; Wang X; Li H; Wang B; You F; Rodríguez LF; Huang J; Ting KC; Ying Y; Lin T
    Fundam Res; 2023 Nov; 3(6):951-959. PubMed ID: 38933002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupling machine learning and crop modeling improves crop yield prediction in the US Corn Belt.
    Shahhosseini M; Hu G; Huber I; Archontoulis SV
    Sci Rep; 2021 Jan; 11(1):1606. PubMed ID: 33452349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-season weather data provide reliable yield estimates of maize and soybean in the US central Corn Belt.
    Joshi VR; Kazula MJ; Coulter JA; Naeve SL; Garcia Y Garcia A
    Int J Biometeorol; 2021 Apr; 65(4):489-502. PubMed ID: 33222025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of Crop Yield Using Phenological Information Extracted from Remote Sensing Vegetation Index.
    Ji Z; Pan Y; Zhu X; Wang J; Li Q
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33671356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting rice yield at pixel scale through synthetic use of crop and deep learning models with satellite data in South and North Korea.
    Jeong S; Ko J; Yeom JM
    Sci Total Environ; 2022 Jan; 802():149726. PubMed ID: 34464811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine Learning-Based Modeling of Spatio-Temporally Varying Responses of Rainfed Corn Yield to Climate, Soil, and Management in the U.S. Corn Belt.
    Xu T; Guan K; Peng B; Wei S; Zhao L
    Front Artif Intell; 2021; 4():647999. PubMed ID: 34124647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for a weakening strength of temperature-corn yield relation in the United States during 1980-2010.
    Leng G
    Sci Total Environ; 2017 Dec; 605-606():551-558. PubMed ID: 28672243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assimilating MODIS data-derived minimum input data set and water stress factors into CERES-Maize model improves regional corn yield predictions.
    Ban HY; Ahn JB; Lee BW
    PLoS One; 2019; 14(2):e0211874. PubMed ID: 30802254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the impact of sub-seasonal meteorological variability on corn yield in the U.S. Corn Belt.
    Jiang H; Hu H; Wang S; Ying Y; Lin T
    Sci Total Environ; 2020 Jul; 724():138235. PubMed ID: 32268290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A data-driven crop model for maize yield prediction.
    Chang Y; Latham J; Licht M; Wang L
    Commun Biol; 2023 Apr; 6(1):439. PubMed ID: 37085696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A CNN-RNN Framework for Crop Yield Prediction.
    Khaki S; Wang L; Archontoulis SV
    Front Plant Sci; 2019; 10():1750. PubMed ID: 32038699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of municipality-level winter wheat yield based on meteorological data using machine learning in Hokkaido, Japan.
    Murakami K; Shimoda S; Kominami Y; Nemoto M; Inoue S
    PLoS One; 2021; 16(10):e0258677. PubMed ID: 34662365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global evaluation of a semiempirical model for yield anomalies and application to within-season yield forecasting.
    Schauberger B; Gornott C; Wechsung F
    Glob Chang Biol; 2017 Nov; 23(11):4750-4764. PubMed ID: 28464336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crop yield response to climate change varies with crop spatial distribution pattern.
    Leng G; Huang M
    Sci Rep; 2017 May; 7(1):1463. PubMed ID: 28469171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Forecasting Corn Yield With Machine Learning Ensembles.
    Shahhosseini M; Hu G; Archontoulis SV
    Front Plant Sci; 2020; 11():1120. PubMed ID: 32849688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of one-dimensional CNN for input data size reduction in LSTM for improved computational efficiency and accuracy in hourly rainfall-runoff modeling.
    Ishida K; Ercan A; Nagasato T; Kiyama M; Amagasaki M
    J Environ Manage; 2024 May; 359():120931. PubMed ID: 38678895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.