These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 31789595)

  • 1. Cycling in synchrony.
    Osés-Ruiz M; Talbot NJ
    Elife; 2019 Dec; 8():. PubMed ID: 31789595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of ApB73, a virulence factor important for colonization of Zea mays by the smut Ustilago maydis.
    Stirnberg A; Djamei A
    Mol Plant Pathol; 2016 Dec; 17(9):1467-1479. PubMed ID: 27279632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adapt your shuttling proteins for virulence: a lesson from the corn smut fungus Ustilago maydis.
    Redkar A; Di Pietro A
    New Phytol; 2018 Oct; 220(2):353-356. PubMed ID: 30238483
    [No Abstract]   [Full Text] [Related]  

  • 4. Appressorium formation in the corn smut fungus Ustilago maydis requires a G2 cell cycle arrest.
    Castanheira S; Pérez-Martín J
    Plant Signal Behav; 2015; 10(4):e1001227. PubMed ID: 25876077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Interactions Between Smut Fungi and Their Host Plants.
    Zuo W; Ökmen B; Depotter JRL; Ebert MK; Redkar A; Misas Villamil J; Doehlemann G
    Annu Rev Phytopathol; 2019 Aug; 57():411-430. PubMed ID: 31337276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell biology of corn smut disease-Ustilago maydis as a model for biotrophic interactions.
    Matei A; Doehlemann G
    Curr Opin Microbiol; 2016 Dec; 34():60-66. PubMed ID: 27504540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytoplasmic retention and degradation of a mitotic inducer enable plant infection by a pathogenic fungus.
    Bardetti P; Castanheira SM; Valerius O; Braus GH; Pérez-Martín J
    Elife; 2019 Oct; 8():. PubMed ID: 31621584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A member of the Fizzy-related family of APC activators is regulated by cAMP and is required at different stages of plant infection by Ustilago maydis.
    Castillo-Lluva S; García-Muse T; Pérez-Martín J
    J Cell Sci; 2004 Aug; 117(Pt 18):4143-56. PubMed ID: 15316079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conserved and Distinct Functions of the “Stunted” (StuA)-Homolog Ust1 During Cell Differentiation in the Corn Smut Fungus Ustilago maydis.
    Baeza-Montañez L; Gold SE; Espeso EA; García-Pedrajas MD
    Mol Plant Microbe Interact; 2015 Jan; 28(1):86-102. PubMed ID: 25208341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Completion of the sexual cycle and demonstration of genetic recombination in Ustilago maydis in vitro.
    Ruiz-Herrera J; León-Ramírez C; Cabrera-Ponce JL; Martínez-Espinoza AD; Herrera-Estrella L
    Mol Gen Genet; 1999 Oct; 262(3):468-72. PubMed ID: 10589834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Rheb GTPase promotes pheromone blindness via a TORC1-independent pathway in the phytopathogenic fungus Ustilago maydis.
    de la Torre A; Pérez-Martín J
    PLoS Genet; 2022 Nov; 18(11):e1010483. PubMed ID: 36374919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incompatibility between proliferation and plant invasion is mediated by a regulator of appressorium formation in the corn smut fungus
    de la Torre A; Castanheira S; Pérez-Martín J
    Proc Natl Acad Sci U S A; 2020 Dec; 117(48):30599-30609. PubMed ID: 33199618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathocycles: Ustilago maydis as a model to study the relationships between cell cycle and virulence in pathogenic fungi.
    Pérez-Martín J; Castillo-Lluva S; Sgarlata C; Flor-Parra I; Mielnichuk N; Torreblanca J; Carbó N
    Mol Genet Genomics; 2006 Sep; 276(3):211-29. PubMed ID: 16896795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ustilago maydis, the delightful blight.
    Banuett F
    Trends Genet; 1992 May; 8(5):174-80. PubMed ID: 1369743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neofunctionalization of the secreted Tin2 effector in the fungal pathogen Ustilago maydis.
    Tanaka S; Schweizer G; Rössel N; Fukada F; Thines M; Kahmann R
    Nat Microbiol; 2019 Feb; 4(2):251-257. PubMed ID: 30510169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fungal-plant signalling in the Ustilago maydis-maize pathosystem.
    Kahmann R; Basse C; Feldbrügge M
    Curr Opin Microbiol; 1999 Dec; 2(6):647-50. PubMed ID: 10607627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The ubc2 gene of Ustilago maydis encodes a putative novel adaptor protein required for filamentous growth, pheromone response and virulence.
    Mayorga ME; Gold SE
    Mol Microbiol; 2001 Sep; 41(6):1365-79. PubMed ID: 11580841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Parasitic strategy and regulation mechanism of Ustilago maydis - A review].
    Li Z; Yan L; Yan Z
    Wei Sheng Wu Xue Bao; 2016 Sep; 56(9):1385-97. PubMed ID: 29738207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ustilago maydis, model system for analysis of the molecular basis of fungal pathogenicity.
    Basse CW; Steinberg G
    Mol Plant Pathol; 2004 Mar; 5(2):83-92. PubMed ID: 20565585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biz1, a zinc finger protein required for plant invasion by Ustilago maydis, regulates the levels of a mitotic cyclin.
    Flor-Parra I; Vranes M; Kämper J; Pérez-Martín J
    Plant Cell; 2006 Sep; 18(9):2369-87. PubMed ID: 16905655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.