These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 31790141)

  • 21. LOMETS: a local meta-threading-server for protein structure prediction.
    Wu S; Zhang Y
    Nucleic Acids Res; 2007; 35(10):3375-82. PubMed ID: 17478507
    [TBL] [Abstract][Full Text] [Related]  

  • 22. MetaPSICOV: combining coevolution methods for accurate prediction of contacts and long range hydrogen bonding in proteins.
    Jones DT; Singh T; Kosciolek T; Tetchner S
    Bioinformatics; 2015 Apr; 31(7):999-1006. PubMed ID: 25431331
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced prediction of RNA solvent accessibility with long short-term memory neural networks and improved sequence profiles.
    Sun S; Wu Q; Peng Z; Yang J
    Bioinformatics; 2019 May; 35(10):1686-1691. PubMed ID: 30321300
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deep-learning contact-map guided protein structure prediction in CASP13.
    Zheng W; Li Y; Zhang C; Pearce R; Mortuza SM; Zhang Y
    Proteins; 2019 Dec; 87(12):1149-1164. PubMed ID: 31365149
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A deep learning framework for improving long-range residue-residue contact prediction using a hierarchical strategy.
    Xiong D; Zeng J; Gong H
    Bioinformatics; 2017 Sep; 33(17):2675-2683. PubMed ID: 28472263
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protein contact prediction by integrating deep multiple sequence alignments, coevolution and machine learning.
    Adhikari B; Hou J; Cheng J
    Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):84-96. PubMed ID: 29047157
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PredMP: a web server for de novo prediction and visualization of membrane proteins.
    Wang S; Fei S; Wang Z; Li Y; Xu J; Zhao F; Gao X
    Bioinformatics; 2019 Feb; 35(4):691-693. PubMed ID: 30084960
    [TBL] [Abstract][Full Text] [Related]  

  • 28. GDFuzz3D: a method for protein 3D structure reconstruction from contact maps, based on a non-Euclidean distance function.
    Pietal MJ; Bujnicki JM; Kozlowski LP
    Bioinformatics; 2015 Nov; 31(21):3499-505. PubMed ID: 26130575
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Contact-Assisted Threading in Low-Homology Protein Modeling.
    Bhattacharya S; Roche R; Shuvo MH; Moussad B; Bhattacharya D
    Methods Mol Biol; 2023; 2627():41-59. PubMed ID: 36959441
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Forecasting residue-residue contact prediction accuracy.
    Wozniak PP; Konopka BM; Xu J; Vriend G; Kotulska M
    Bioinformatics; 2017 Nov; 33(21):3405-3414. PubMed ID: 29036497
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assessing the accuracy of contact predictions in CASP13.
    Shrestha R; Fajardo E; Gil N; Fidelis K; Kryshtafovych A; Monastyrskyy B; Fiser A
    Proteins; 2019 Dec; 87(12):1058-1068. PubMed ID: 31587357
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Accurate prediction of protein contact maps by coupling residual two-dimensional bidirectional long short-term memory with convolutional neural networks.
    Hanson J; Paliwal K; Litfin T; Yang Y; Zhou Y
    Bioinformatics; 2018 Dec; 34(23):4039-4045. PubMed ID: 29931279
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of deep learning methods for blind protein contact prediction in CASP12.
    Wang S; Sun S; Xu J
    Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):67-77. PubMed ID: 28845538
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DeepMSA: constructing deep multiple sequence alignment to improve contact prediction and fold-recognition for distant-homology proteins.
    Zhang C; Zheng W; Mortuza SM; Li Y; Zhang Y
    Bioinformatics; 2020 Apr; 36(7):2105-2112. PubMed ID: 31738385
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CoABind: a novel algorithm for Coenzyme A (CoA)- and CoA derivatives-binding residues prediction.
    Meng Q; Peng Z; Yang J
    Bioinformatics; 2018 Aug; 34(15):2598-2604. PubMed ID: 29547921
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessment of protein assembly prediction in CASP12.
    Lafita A; Bliven S; Kryshtafovych A; Bertoni M; Monastyrskyy B; Duarte JM; Schwede T; Capitani G
    Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):247-256. PubMed ID: 29071742
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improving consensus contact prediction via server correlation reduction.
    Gao X; Bu D; Xu J; Li M
    BMC Struct Biol; 2009 May; 9():28. PubMed ID: 19419562
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CGLFold: a contact-assisted de novo protein structure prediction using global exploration and loop perturbation sampling algorithm.
    Liu J; Zhou XG; Zhang Y; Zhang GJ
    Bioinformatics; 2020 Apr; 36(8):2443-2450. PubMed ID: 31860059
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Template-based prediction of protein structure with deep learning.
    Zhang H; Shen Y
    BMC Genomics; 2020 Dec; 21(Suppl 11):878. PubMed ID: 33372607
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deep architectures for protein contact map prediction.
    Di Lena P; Nagata K; Baldi P
    Bioinformatics; 2012 Oct; 28(19):2449-57. PubMed ID: 22847931
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.