BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 31790142)

  • 1. The immune landscape and response to immune checkpoint blockade therapy in lymphoma.
    Kline J; Godfrey J; Ansell SM
    Blood; 2020 Feb; 135(8):523-533. PubMed ID: 31790142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PD-1-PD-L1 immune-checkpoint blockade in B-cell lymphomas.
    Goodman A; Patel SP; Kurzrock R
    Nat Rev Clin Oncol; 2017 Apr; 14(4):203-220. PubMed ID: 27805626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PD-1 expression and clinical PD-1 blockade in B-cell lymphomas.
    Xu-Monette ZY; Zhou J; Young KH
    Blood; 2018 Jan; 131(1):68-83. PubMed ID: 29118007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PD-1 and LAG-3 Checkpoint Blockade: Potential Avenues for Therapy in B-Cell Lymphoma.
    Tobin JWD; Bednarska K; Campbell A; Keane C
    Cells; 2021 May; 10(5):. PubMed ID: 34068762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PD-1/PD-L1 Pathway and Its Blockade in Patients with Classic Hodgkin Lymphoma and Non-Hodgkin Large-Cell Lymphomas.
    Xie W; Medeiros LJ; Li S; Yin CC; Khoury JD; Xu J
    Curr Hematol Malig Rep; 2020 Aug; 15(4):372-381. PubMed ID: 32394185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PD-1/PD-L1 immune checkpoint and p53 loss facilitate tumor progression in activated B-cell diffuse large B-cell lymphomas.
    Pascual M; Mena-Varas M; Robles EF; Garcia-Barchino MJ; Panizo C; Hervas-Stubbs S; Alignani D; Sagardoy A; Martinez-Ferrandis JI; Bunting KL; Meier S; Sagaert X; Bagnara D; Guruceaga E; Blanco O; Celay J; Martínez-Baztan A; Casares N; Lasarte JJ; MacCarthy T; Melnick A; Martinez-Climent JA; Roa S
    Blood; 2019 May; 133(22):2401-2412. PubMed ID: 30975638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Current Clinical Applications and Future Perspectives of Immune Checkpoint Inhibitors in Non-Hodgkin Lymphoma.
    Apostolidis J; Sayyed A; Darweesh M; Kaloyannidis P; Al Hashmi H
    J Immunol Res; 2020; 2020():9350272. PubMed ID: 33178841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetically Engineered Mouse Models Support a Major Role of Immune Checkpoint-Dependent Immunosurveillance Escape in B-Cell Lymphomas.
    Lemasson Q; Akil H; Feuillard J; Vincent-Fabert C
    Front Immunol; 2021; 12():669964. PubMed ID: 34113345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PD-1-PD-L1 immune-checkpoint blockade in malignant lymphomas.
    Wang Y; Wu L; Tian C; Zhang Y
    Ann Hematol; 2018 Feb; 97(2):229-237. PubMed ID: 29128997
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Godfrey J; Tumuluru S; Bao R; Leukam M; Venkataraman G; Phillip J; Fitzpatrick C; McElherne J; MacNabb BW; Orlowski R; Smith SM; Kline J
    Blood; 2019 May; 133(21):2279-2290. PubMed ID: 30910787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the diagnostic and prognostic value of PDL1 expression in Hodgkin and B-cell lymphomas.
    Menter T; Bodmer-Haecki A; Dirnhofer S; Tzankov A
    Hum Pathol; 2016 Aug; 54():17-24. PubMed ID: 27045512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Programmed death-1 ligands PD-L1 and PD-L2 show distinctive and restricted patterns of expression in lymphoma subtypes.
    Panjwani PK; Charu V; DeLisser M; Molina-Kirsch H; Natkunam Y; Zhao S
    Hum Pathol; 2018 Jan; 71():91-99. PubMed ID: 29122656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunotherapy in aggressive B-cell lymphomas.
    Jacobson CA; Armand P
    Best Pract Res Clin Haematol; 2018 Sep; 31(3):299-305. PubMed ID: 30213400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frequent structural variations involving programmed death ligands in Epstein-Barr virus-associated lymphomas.
    Kataoka K; Miyoshi H; Sakata S; Dobashi A; Couronné L; Kogure Y; Sato Y; Nishida K; Gion Y; Shiraishi Y; Tanaka H; Chiba K; Watatani Y; Kakiuchi N; Shiozawa Y; Yoshizato T; Yoshida K; Makishima H; Sanada M; Onozawa M; Teshima T; Yoshiki Y; Ishida T; Suzuki K; Shimada K; Tomita A; Kato M; Ota Y; Izutsu K; Demachi-Okamura A; Akatsuka Y; Miyano S; Yoshino T; Gaulard P; Hermine O; Takeuchi K; Ohshima K; Ogawa S
    Leukemia; 2019 Jul; 33(7):1687-1699. PubMed ID: 30683910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nivolumab in Patients With Relapsed or Refractory Hematologic Malignancy: Preliminary Results of a Phase Ib Study.
    Lesokhin AM; Ansell SM; Armand P; Scott EC; Halwani A; Gutierrez M; Millenson MM; Cohen AD; Schuster SJ; Lebovic D; Dhodapkar M; Avigan D; Chapuy B; Ligon AH; Freeman GJ; Rodig SJ; Cattry D; Zhu L; Grosso JF; Bradley Garelik MB; Shipp MA; Borrello I; Timmerman J
    J Clin Oncol; 2016 Aug; 34(23):2698-704. PubMed ID: 27269947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding Immune Evasion and Therapeutic Targeting Associated with PD-1/PD-L1 Pathway in Diffuse Large B-cell Lymphoma.
    Song MK; Park BB; Uhm J
    Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30884772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Checkpoint blockade in lymphoma.
    Armand P
    Hematology Am Soc Hematol Educ Program; 2015; 2015():69-73. PubMed ID: 26637703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HDAC3 Inhibition Upregulates PD-L1 Expression in B-Cell Lymphomas and Augments the Efficacy of Anti-PD-L1 Therapy.
    Deng S; Hu Q; Zhang H; Yang F; Peng C; Huang C
    Mol Cancer Ther; 2019 May; 18(5):900-908. PubMed ID: 30824609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomarkers for checkpoint inhibition in hematologic malignancies.
    Atanackovic D; Luetkens T
    Semin Cancer Biol; 2018 Oct; 52(Pt 2):198-206. PubMed ID: 29775689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emerging role of checkpoint blockade therapy in lymphoma.
    Galanina N; Kline J; Bishop MR
    Ther Adv Hematol; 2017 Feb; 8(2):81-90. PubMed ID: 28203344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.