These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 31790203)

  • 21. Efficient photocatalytic hydrogen evolution with ligand engineered all-inorganic InP and InP/ZnS colloidal quantum dots.
    Yu S; Fan XB; Wang X; Li J; Zhang Q; Xia A; Wei S; Wu LZ; Zhou Y; Patzke GR
    Nat Commun; 2018 Oct; 9(1):4009. PubMed ID: 30275447
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes.
    Won YH; Cho O; Kim T; Chung DY; Kim T; Chung H; Jang H; Lee J; Kim D; Jang E
    Nature; 2019 Nov; 575(7784):634-638. PubMed ID: 31776489
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Double-Shelled InP/ZnMnS/ZnS Quantum Dots for Light-Emitting Devices.
    Zhang W; Zhuang W; Liu R; Xing X; Qu X; Liu H; Xu B; Wang K; Sun XW
    ACS Omega; 2019 Nov; 4(21):18961-18968. PubMed ID: 31763517
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fabrication, spectroscopy, and dynamics of highly luminescent core-shell InP@ZnSe quantum dots.
    Kim MR; Chung JH; Lee M; Lee S; Jang DJ
    J Colloid Interface Sci; 2010 Oct; 350(1):5-9. PubMed ID: 20619850
    [TBL] [Abstract][Full Text] [Related]  

  • 25. How quickly does a hole relax into an engineered defect state in CdSe quantum dots.
    Avidan A; Pinkas I; Oron D
    ACS Nano; 2012 Apr; 6(4):3063-9. PubMed ID: 22439798
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of heterojunction on exciton binding energy and electron-hole recombination probability in CdSe/ZnS quantum dots.
    Elward JM; Chakraborty A
    J Chem Theory Comput; 2015 Feb; 11(2):462-71. PubMed ID: 26580906
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Triplet Sensitization and Photon Upconversion Using InP-Based Quantum Dots.
    Lai R; Sang Y; Zhao Y; Wu K
    J Am Chem Soc; 2020 Nov; 142(47):19825-19829. PubMed ID: 33170006
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effects of staggered bandgap in the InP/CdSe and CdSe/InP core/shell quantum dots.
    Kim S; Park J; Kim S; Jung W; Sung J; Kim SW
    J Colloid Interface Sci; 2010 Jun; 346(2):347-51. PubMed ID: 20381813
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Surface passivation extends single and biexciton lifetimes of InP quantum dots.
    Yang W; Yang Y; Kaledin AL; He S; Jin T; McBride JR; Lian T
    Chem Sci; 2020 Jun; 11(22):5779-5789. PubMed ID: 32832054
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impact excitation and electron-hole multiplication in graphene and carbon nanotubes.
    Gabor NM
    Acc Chem Res; 2013 Jun; 46(6):1348-57. PubMed ID: 23369453
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Effect of hole transporting materials on photoluminescence of CdSe core/shell quantum dots].
    Qu YQ; Zhang QB; Jing PT; Sun YJ; Zeng QH; Zhang YL; Kong XG
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Dec; 29(12):3204-7. PubMed ID: 20210132
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamics of Intraband and Interband Auger Processes in Colloidal Core-Shell Quantum Dots.
    Rabouw FT; Vaxenburg R; Bakulin AA; van Dijk-Moes RJ; Bakker HJ; Rodina A; Lifshitz E; L Efros A; Koenderink AF; Vanmaekelbergh D
    ACS Nano; 2015 Oct; 9(10):10366-76. PubMed ID: 26389562
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of indium alloying on the charge carrier dynamics of thick-shell InP/ZnSe quantum dots.
    Freymeyer NJ; Click SM; Reid KR; Chisholm MF; Bradsher CE; McBride JR; Rosenthal SJ
    J Chem Phys; 2020 Apr; 152(16):161104. PubMed ID: 32357779
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tuning the interfacial stoichiometry of InP core and InP/ZnSe core/shell quantum dots.
    Park N; Eagle FW; DeLarme AJ; Monahan M; LoCurto T; Beck R; Li X; Cossairt BM
    J Chem Phys; 2021 Aug; 155(8):084701. PubMed ID: 34470352
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Slow Hole Localization and Fast Electron Cooling in Cu-Doped InP/ZnSe Quantum Dots.
    Prins PT; Spruijt DAW; Mangnus MJJ; Rabouw FT; Vanmaekelbergh D; de Mello Donega C; Geiregat P
    J Phys Chem Lett; 2022 Oct; 13(42):9950-9956. PubMed ID: 36260410
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Beneficial effects of water in the colloidal synthesis of InP/ZnS core-shell quantum dots for optoelectronic applications.
    Ramasamy P; Kim B; Lee MS; Lee JS
    Nanoscale; 2016 Oct; 8(39):17159-17168. PubMed ID: 27540861
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Highly Photoconductive InP Quantum Dots Films and Solar Cells.
    Crisp RW; Kirkwood N; Grimaldi G; Kinge S; Siebbeles LDA; Houtepen AJ
    ACS Appl Energy Mater; 2018 Nov; 1(11):6569-6576. PubMed ID: 30506040
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Highly Efficient and Bright Inverted Top-Emitting InP Quantum Dot Light-Emitting Diodes Introducing a Hole-Suppressing Interlayer.
    Lee T; Hahm D; Kim K; Bae WK; Lee C; Kwak J
    Small; 2019 Dec; 15(50):e1905162. PubMed ID: 31729177
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Controlled Photoinduced Electron Transfer from InP/ZnS Quantum Dots through Cu Doping: A New Prototype for the Visible-Light Photocatalytic Hydrogen Evolution Reaction.
    Bang J; Das S; Yu EJ; Kim K; Lim H; Kim S; Hong JW
    Nano Lett; 2020 Sep; 20(9):6263-6271. PubMed ID: 32813529
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots.
    Nozik AJ
    Annu Rev Phys Chem; 2001; 52():193-231. PubMed ID: 11326064
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.