BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 31790233)

  • 1. Growth Progression of Oxygenic Photogranules and Its Impact on Bioactivity for Aeration-Free Wastewater Treatment.
    Abouhend AS; Milferstedt K; Hamelin J; Ansari AA; Butler C; Carbajal-González BI; Park C
    Environ Sci Technol; 2020 Jan; 54(1):486-496. PubMed ID: 31790233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of zero-valent iron and granular activated carbon on nutrient removal and community assembly of photogranules treating low-strength wastewater.
    Wang D; Li A
    Sci Total Environ; 2022 Feb; 806(Pt 3):151311. PubMed ID: 34743817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Oxygenic Photogranule Process for Aeration-Free Wastewater Treatment.
    Abouhend AS; McNair A; Kuo-Dahab WC; Watt C; Butler CS; Milferstedt K; Hamelin J; Seo J; Gikonyo GJ; El-Moselhy KM; Park C
    Environ Sci Technol; 2018 Mar; 52(6):3503-3511. PubMed ID: 29505719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High resolution functional analysis and community structure of photogranules.
    Trebuch LM; Bourceau OM; Vaessen SMF; Neu TR; Janssen M; de Beer D; Vet LEM; Wijffels RH; Fernandes TV
    ISME J; 2023 Jun; 17(6):870-879. PubMed ID: 36997724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. N
    Trebuch LM; Schoofs K; Vaessen SMF; Neu TR; Janssen M; Wijffels RH; Vet LEM; Fernandes TV
    Biotechnol Bioeng; 2023 May; 120(5):1303-1315. PubMed ID: 36779371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrodynamic cultivation of aeration-free oxygenic photogranules is favored by sufficient amounts of organic carbon.
    Li J; Tang L; Zhang Y; Gao M; Wang S; Wang X
    Bioresour Technol; 2024 Jun; 401():130736. PubMed ID: 38670289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of inorganic nitrogen in successful formation of granular biofilms for wastewater treatment that support cyanobacteria and bacteria.
    Stauch-White K; Srinivasan VN; Camilla Kuo-Dahab W; Park C; Butler CS
    AMB Express; 2017 Dec; 7(1):146. PubMed ID: 28697582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of hydraulic retention time on community assembly and function of photogranules for wastewater treatment.
    Trebuch LM; Oyserman BO; Janssen M; Wijffels RH; Vet LEM; Fernandes TV
    Water Res; 2020 Apr; 173():115506. PubMed ID: 32006806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cross-Feeding between Filamentous Cyanobacteria and Symbiotic Bacteria Favors Rapid Photogranulation.
    Kong L; Feng Y; Du W; Zheng R; Sun J; Rong K; Sun W; Liu S
    Environ Sci Technol; 2023 Nov; 57(44):16953-16963. PubMed ID: 37886803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping the biological activities of filamentous oxygenic photogranules.
    Ouazaite H; Milferstedt K; Hamelin J; Desmond-Le Quéméner E
    Biotechnol Bioeng; 2021 Feb; 118(2):601-611. PubMed ID: 33006374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wastewater treatment using oxygenic photogranule-based process has lower environmental impact than conventional activated sludge process.
    Brockmann D; Gérand Y; Park C; Milferstedt K; Hélias A; Hamelin J
    Bioresour Technol; 2021 Jan; 319():124204. PubMed ID: 33038652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The importance of filamentous cyanobacteria in the development of oxygenic photogranules.
    Milferstedt K; Kuo-Dahab WC; Butler CS; Hamelin J; Abouhend AS; Stauch-White K; McNair A; Watt C; Carbajal-González BI; Dolan S; Park C
    Sci Rep; 2017 Dec; 7(1):17944. PubMed ID: 29263358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High methane potential of oxygenic photogranules decreases after starvation.
    Galea-Outón S; Milferstedt K; Hamelin J
    Bioresour Technol; 2024 Jun; 406():130986. PubMed ID: 38908765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wastewater treatment with microalgal-bacterial aggregates: The tradeoff between energy savings and footprint requirements.
    Hammond CR; Loge FJ
    Bioresour Technol; 2024 Mar; 395():130270. PubMed ID: 38158093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photogranulation in a Hydrostatic Environment Occurs with Limitation of Iron.
    Ansari AA; Ansari AA; Abouhend AS; Gikonyo JG; Park C
    Environ Sci Technol; 2021 Aug; 55(15):10672-10683. PubMed ID: 34255495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Making waves: How to clean surface water with photogranules.
    Trebuch LM; Timmer J; Graaf JV; Janssen M; Fernandes TV
    Water Res; 2024 Jun; 260():121875. PubMed ID: 38875855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of the Fate and Dynamics of Extracellular Polymeric Substances (EPS) during Sludge-Based Photogranulation under Hydrostatic Conditions.
    Kuo-Dahab WC; Stauch-White K; Butler CS; Gikonyo GJ; Carbajal-González B; Ivanova A; Dolan S; Park C
    Environ Sci Technol; 2018 Sep; 52(18):10462-10471. PubMed ID: 30153020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unmasking photogranulation in decreasing glacial albedo and net autotrophic wastewater treatment.
    Park C; Takeuchi N
    Environ Microbiol; 2021 Nov; 23(11):6391-6404. PubMed ID: 34545673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beyond feast and famine: Cultivating hydrodynamic oxygenic photogranules with better performances under permanent feast regime.
    Zhong J; Tang L; Gao M; Wang S; Wang X
    Bioresour Technol; 2024 Jun; 401():130752. PubMed ID: 38685514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.