BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 31790733)

  • 1. Study on miscibility, thermal properties, degradation behaviors, and toughening mechanism of poly(lactic acid)/poly (ethylene-butylacrylate-glycidyl methacrylate) blends.
    Zhao J; Pan H; Yang H; Bian J; Zhang H; Gao G; Dong L
    Int J Biol Macromol; 2020 Jan; 143():443-452. PubMed ID: 31790733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Ethylene/butyl methacrylate/Glycidyl Methacrylate Terpolymer on toughness and biodegradation of poly (l-lactic acid).
    Jia S; Chen Y; Yu Y; Han L; Zhang H; Dong L
    Int J Biol Macromol; 2019 Apr; 127():415-424. PubMed ID: 30659879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Super-Toughened Poly(lactic Acid) with Poly(ε-caprolactone) and Ethylene-Methyl Acrylate-Glycidyl Methacrylate by Reactive Melt Blending.
    Hou AL; Qu JP
    Polymers (Basel); 2019 May; 11(5):. PubMed ID: 31052419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toughening of polylactide by melt blending with a biodegradable poly(ether)urethane elastomer.
    Li Y; Shimizu H
    Macromol Biosci; 2007 Jul; 7(7):921-8. PubMed ID: 17578835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Facile Fabrication of High Toughness Poly(lactic Acid) via Reactive Extrusion with Poly(butylene Succinate) and Ethylene-Methyl Acrylate-Glycidyl Methacrylate.
    Xue B; He H; Zhu Z; Li J; Huang Z; Wang G; Chen M; Zhan Z
    Polymers (Basel); 2018 Dec; 10(12):. PubMed ID: 30961326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved miscibility and toughness of biological poly(3-hydroxybutyrate-co-4-hydroxybutyrate)/poly(lactic acid) blends via melt-blending-induced thermal degradation.
    Ong YT; Chen TM; Don TM
    Int J Biol Macromol; 2023 Dec; 253(Pt 3):127001. PubMed ID: 37729999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supertoughened renewable PLA reactive multiphase blends system: phase morphology and performance.
    Zhang K; Nagarajan V; Misra M; Mohanty AK
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12436-48. PubMed ID: 25029099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase morphology, rheological behavior and mechanical properties of supertough biobased poly(lactic acid) reactive ternary blends.
    Chen K; Zhou C; Yao L; Jing M; Liu C; Shen C; Wang Y
    Int J Biol Macromol; 2023 Dec; 253(Pt 4):127079. PubMed ID: 37769761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Super-tough polylactic acid (PLA)/poly(butylene succinate) (PBS) materials prepared through reactive blending with epoxy-functionalized PMMA-GMA copolymer.
    Zhao T; Yu J; Pan H; Zhao Y; Zhang Q; Yu X; Bian J; Han L; Zhang H
    Int J Biol Macromol; 2023 Nov; 251():126150. PubMed ID: 37544555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ductile and biodegradable poly (lactic acid) matrix film with layered structure.
    Cao Z; Pan H; Chen Y; Han L; Bian J; Zhang H; Dong L; Yang Y
    Int J Biol Macromol; 2019 Sep; 137():1141-1152. PubMed ID: 31295492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(ethylene succinate-
    Feng Y; Wang C; Yang J; Tan T; Yang J
    ACS Omega; 2024 Feb; 9(6):6578-6587. PubMed ID: 38371800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the compatibility and toughness of sustainable polylactide/poly(butylene adipate-co-terephthalate) blends by incorporation of peroxide and diacrylate.
    Liu Y; Dou Q
    Int J Biol Macromol; 2024 Feb; 259(Pt 2):129355. PubMed ID: 38218295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective enzymatic degradation and porous morphology of poly(butylene succinate)/poly(lactic acid) blends.
    Shi K; Bai Z; Su T; Wang Z
    Int J Biol Macromol; 2019 Apr; 126():436-442. PubMed ID: 30586586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving the Toughness and Thermal Resistance of Polyoxymethylene/Poly(lactic acid) Blends: Evaluation of Structure-Properties Correlation for Reactive Processing.
    Andrzejewski J; Skórczewska K; Kloziński A
    Polymers (Basel); 2020 Feb; 12(2):. PubMed ID: 32028602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Toughness Poly(Lactic Acid)/Starch Blends Prepared through Reactive Blending Plasticization and Compatibilization.
    Hu H; Xu A; Zhang D; Zhou W; Peng S; Zhao X
    Molecules; 2020 Dec; 25(24):. PubMed ID: 33339088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biobased Poly(ethylene terephthalate)/Poly(lactic acid) Blends Tailored with Epoxide Compatibilizers.
    You X; Snowdon MR; Misra M; Mohanty AK
    ACS Omega; 2018 Sep; 3(9):11759-11769. PubMed ID: 31459269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toughening Biosourced Poly(lactic acid) and Poly(3-hydroxybutyrate-
    Hu K; Huang D; Jiang H; Sun S; Ma Z; Zhang K; Pan L; Li Y
    ACS Omega; 2019 Nov; 4(22):19777-19786. PubMed ID: 31788610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase Morphology and Mechanical Properties of Super-Tough PLLA/TPE/EMA-GMA Ternary Blends.
    Boruvka M; Base R; Novak J; Brdlik P; Behalek L; Ngaowthong C
    Polymers (Basel); 2024 Jan; 16(2):. PubMed ID: 38256991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance, rheological behavior and enzymatic degradation of poly(lactic acid)/modified fulvic acid composites.
    Zhang H; Zhen W
    Int J Biol Macromol; 2019 Oct; 139():181-190. PubMed ID: 31369784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase Morphology and Performance of Supertough PLA/EMA-GMA/ZrP Nanocomposites Prepared through Reactive Melt-Blending.
    Wu H; Hou A; Qu JP
    ACS Omega; 2019 Nov; 4(21):19046-19053. PubMed ID: 31763527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.