These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 31790805)
1. Dietary nutrient balance shapes phenotypic traits of Drosophila melanogaster in interaction with gut microbiota. Henry Y; Overgaard J; Colinet H Comp Biochem Physiol A Mol Integr Physiol; 2020 Mar; 241():110626. PubMed ID: 31790805 [TBL] [Abstract][Full Text] [Related]
2. Consumption of dietary sugar by gut bacteria determines Drosophila lipid content. Huang JH; Douglas AE Biol Lett; 2015 Sep; 11(9):20150469. PubMed ID: 26382071 [TBL] [Abstract][Full Text] [Related]
3. Gut Bacteria Mediate Nutrient Availability in Lesperance DNA; Broderick NA Appl Environ Microbiol; 2020 Dec; 87(1):. PubMed ID: 33067193 [No Abstract] [Full Text] [Related]
4. Interspecies interactions determine the impact of the gut microbiota on nutrient allocation in Drosophila melanogaster. Newell PD; Douglas AE Appl Environ Microbiol; 2014 Jan; 80(2):788-96. PubMed ID: 24242251 [TBL] [Abstract][Full Text] [Related]
6. Host Genetic Control of the Microbiota Mediates the Drosophila Nutritional Phenotype. Chaston JM; Dobson AJ; Newell PD; Douglas AE Appl Environ Microbiol; 2016 Jan; 82(2):671-9. PubMed ID: 26567306 [TBL] [Abstract][Full Text] [Related]
7. Sannino DR; Dobson AJ Appl Environ Microbiol; 2023 Oct; 89(10):e0016523. PubMed ID: 37800920 [TBL] [Abstract][Full Text] [Related]
8. The Nutritional Environment Influences the Impact of Microbes on Drosophila melanogaster Life Span. Keebaugh ES; Yamada R; Ja WW mBio; 2019 Jul; 10(4):. PubMed ID: 31289176 [TBL] [Abstract][Full Text] [Related]
9. Conditionally Pathogenic Gut Microbes Promote Larval Growth by Increasing Redox-Dependent Fat Storage in High-Sugar Diet-Fed Drosophila. Whon TW; Shin NR; Jung MJ; Hyun DW; Kim HS; Kim PS; Bae JW Antioxid Redox Signal; 2017 Dec; 27(16):1361-1380. PubMed ID: 28462587 [TBL] [Abstract][Full Text] [Related]
10. Microbiota disruption leads to reduced cold tolerance in Drosophila flies. Henry Y; Colinet H Naturwissenschaften; 2018 Sep; 105(9-10):59. PubMed ID: 30291448 [TBL] [Abstract][Full Text] [Related]
11. Bacterial Metabolism and Transport Genes Are Associated with the Preference of Drosophila melanogaster for Dietary Yeast. Call TB; Davis EK; Bean JD; Lemmon SG; Chaston JM Appl Environ Microbiol; 2022 Aug; 88(16):e0072022. PubMed ID: 35913151 [TBL] [Abstract][Full Text] [Related]
12. Metabolic Basis for Mutualism between Gut Bacteria and Its Impact on the Sommer AJ; Newell PD Appl Environ Microbiol; 2019 Jan; 85(2):. PubMed ID: 30389767 [TBL] [Abstract][Full Text] [Related]
13. Gut Microbiota Modifies Olfactory-Guided Microbial Preferences and Foraging Decisions in Drosophila. Wong AC; Wang QP; Morimoto J; Senior AM; Lihoreau M; Neely GG; Simpson SJ; Ponton F Curr Biol; 2017 Aug; 27(15):2397-2404.e4. PubMed ID: 28756953 [TBL] [Abstract][Full Text] [Related]
14. Adaptation to Chronic Nutritional Stress Leads to Reduced Dependence on Microbiota in Erkosar B; Kolly S; van der Meer JR; Kawecki TJ mBio; 2017 Oct; 8(5):. PubMed ID: 29066546 [TBL] [Abstract][Full Text] [Related]
15. Drosophila melanogaster establishes a species-specific mutualistic interaction with stable gut-colonizing bacteria. Pais IS; Valente RS; Sporniak M; Teixeira L PLoS Biol; 2018 Jul; 16(7):e2005710. PubMed ID: 29975680 [TBL] [Abstract][Full Text] [Related]
17. How gut transcriptional function of Drosophila melanogaster varies with the presence and composition of the gut microbiota. Bost A; Franzenburg S; Adair KL; Martinson VG; Loeb G; Douglas AE Mol Ecol; 2018 Apr; 27(8):1848-1859. PubMed ID: 29113026 [TBL] [Abstract][Full Text] [Related]
18. Gut microbiota dictates the metabolic response of Drosophila to diet. Wong AC; Dobson AJ; Douglas AE J Exp Biol; 2014 Jun; 217(Pt 11):1894-901. PubMed ID: 24577449 [TBL] [Abstract][Full Text] [Related]